A095402 Sum of digits of all distinct prime factors of n.
0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 2, 5, 4, 9, 8, 2, 8, 5, 10, 7, 10, 4, 5, 5, 5, 6, 3, 9, 11, 10, 4, 2, 5, 10, 12, 5, 10, 12, 7, 7, 5, 12, 7, 4, 8, 7, 11, 5, 7, 7, 11, 6, 8, 5, 7, 9, 13, 13, 14, 10, 7, 6, 10, 2, 9, 7, 13, 10, 8, 14, 8, 5, 10, 12, 8, 12, 9, 9, 16, 7, 3, 7, 11, 12, 13, 9, 14, 4, 17, 10
Offset: 1
Examples
n = 1000: prime set = {2, 5}, a[1000] = 7; n = 255255: prime set={3, 5, 7, 11, 13, 17}, a[255255]= 3+5+7+2+4+8 = 29.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] sd[x_] :=Apply[Plus, IntegerDigits[x]] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] sdp[x_] :=Apply[Plus, tdp[x]] Table[sdp[w], {w, 1, 150}] Table[Total[Flatten[IntegerDigits[First/@FactorInteger[n]]]],{n,1,100}] (Zak Seidov)
-
Python
from sympy import factorint def a(n): return sum(sum(map(int, str(p))) for p in factorint(n)) print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Dec 12 2023