This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095674 #6 Mar 28 2015 18:16:21 %S A095674 1,2,2,5,7,5,15,22,25,15,52,74,97,97,52,203,277,372,449,411,203,877, %T A095674 1154,1524,1948,2209,1892,877,4140,5294,6816,8734,10718,11570,9402, %U A095674 4140,21147,26441,33255,41954,52357,62107,64404,50127,21147,115975,142416 %N A095674 Triangle read by rows, formed from product of Pascal's triangle (A007318) and Aitken's (or Bell's) triangle (A011971). %C A095674 These triangles are to be thought of as infinite lower-triangular matrices. %e A095674 Triangle begins: %e A095674 1 %e A095674 2 2 %e A095674 5 7 5 %e A095674 15 22 25 15 %e A095674 52 74 97 97 52 %e A095674 203 277 372 449 411 203 %t A095674 a[0, 0] = 1; a[n_, 0] := a[n - 1, n - 1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k - 1] + a[n - 1, k - 1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 9}, {r, 0, 9}]; pm = Table[p[n, r], {n, 0, 9}, {r, 0, 9}]; t = Flatten[pm.am]; Delete[ t, Position[t, 0]] (* _Robert G. Wilson v_, Jul 12 2004 *) %Y A095674 Cf. A007318, A011971, A095675. Row sums give A005494. First column is A000110. %K A095674 nonn,tabl,easy %O A095674 0,2 %A A095674 _N. J. A. Sloane_, based on a suggestion from _Gary W. Adamson_, Jun 22 2004 %E A095674 More terms from _Robert G. Wilson v_, Jul 13 2004