A095702 Smallest "n-augmented" amicable number: the smallest positive integer k such that m = sigma(k) - k + n > k and k = sigma(m) - m + n, where sigma(k) is the sum of the divisors of k.
220, 6160, 24, 180, 20, 6, 224, 2632, 40, 10, 16, 28, 340, 14, 15, 42, 66, 3696, 208, 20, 21, 54, 264, 24, 68, 26, 88, 120, 102, 30, 4030, 56, 33, 34, 35, 60, 110, 38, 280, 40, 354, 66, 476, 44, 130, 46, 408, 92, 1276, 96, 51, 52, 354, 78, 55, 120, 57, 58, 852, 60, 170
Offset: 0
Keywords
Examples
a(1)= 6160 because sigma(6160)-6160+1 == 11697, sigma(11697)-11697+1 == 6160 and 6160 is the smallest integer for which this holds.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[n_] := Module[{k = n + 1, s}, While[( s = DivisorSigma[1, k] - k + n) <= k || DivisorSigma[1, s] - s + n != k, k++]; k]; Array[a, 61, 0] (* Amiram Eldar, Dec 24 2020 *)
-
PARI
for(g=0,60,x=g+1;while(1,a=sigma(x)-x+g;if((a-x)*a,if(sigma(a)-a+g==x,print1(x,",");break));x+=1))