A095705 Triangular array read by rows: a(n, k) = sum of number of ordered factorizations of all prime signatures with n total prime factors and k distinct prime factors.
1, 2, 3, 4, 8, 13, 8, 46, 44, 75, 16, 124, 308, 308, 541, 32, 572, 1790, 2536, 2612, 4683, 64, 1568, 8352, 17028, 24704, 25988, 47293, 128, 6728, 40628, 137498, 187928, 277456, 296564, 545835, 256, 18768, 228308, 719056, 1699184, 2356560, 3526448, 3816548, 7087261
Offset: 1
Examples
There are two prime signatures with 5 total primes and 3 distinct primes: p^3*q*r and p^2*q^2*r. A074206(p^3*q*r) = 132 and A074206(p^2*q^2*r) = 176, so a(5, 3) = 132+176 = 308. Array begins: 1 2, 3 4, 8, 13 8, 46, 44, 75 16, 124, 308, 308, 541 32, 572, 1790, 2536, 2612, 4683 64, 1568, 8352, 17028, 24704, 25988, 47293 128, 6728, 40628, 137498, 187928, 277456, 296564, 545835 256, 18768, 228308, 719056, 1699184, 2356560, 3526448, 3816548, 7087261
Links
- Amiram Eldar, Table of n, a(n) for n = 1..210 (rows n=1..20, flattened)
Programs
-
Mathematica
H[0] = 0; H[1] = 1; H[n_] := H[n] = Total[H /@ Most[Divisors[n]]]; T[n_, k_] := Module[{t = IntegerPartitions[n, {k}]}, Total[H /@ Times @@@ ((Prime[Range[k]]^#) & /@ t)]]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 28 2025 *)
Extensions
Edited and extended by David Wasserman, Feb 22 2008
Comments