cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095717 "Second order" highly composite numbers: the gap between the number of divisors (d(n)) rises to a new record.

This page as a plain text file.
%I A095717 #12 Jul 17 2019 07:38:49
%S A095717 2,12,120,720,2520,5040,110880,1441440,21621600,367567200,6983776800,
%T A095717 13967553600,321253732800,481880599200,963761198400,6746328388800,
%U A095717 55898149507200,130429015516800,195643523275200,1732842634723200,4043299481020800,6064949221531200,60649492215312000
%N A095717 "Second order" highly composite numbers: the gap between the number of divisors (d(n)) rises to a new record.
%C A095717 The corresponding indices of the highly composite numbers are 2, 5, 10, 14, 18, 19, 30, 40, ... (see the link for more values). - _Amiram Eldar_, Jul 17 2019
%H A095717 Amiram Eldar, <a href="/A095717/b095717.txt">Table of n, a(n) for n = 1..1374</a>
%H A095717 Amiram Eldar, <a href="/A095717/a095717.txt">Table of n and k such that A002182(k) = a(n) for n = 1..1374</a>
%e A095717 120 is in the sequence because d(120)=16 and the previous highly composite number is 60 with d(60)=12, the gap between the number of divisor 16-12=4 is the maximum with number <=120
%t A095717 s={}; dmax = dmprev= gapmax=0; Do[d = DivisorSigma[0, k]; If[d > dmax ,  dmprev = dmax; dmax = d; gap = dmax - dmprev ;If[gap > gapmax, gapmax = gap; AppendTo[s, k]]], {k, 1, 1500000}]; s (* _Amiram Eldar_, Jul 17 2019 *)
%Y A095717 Cf. A002182, A002183, A053640, A053624.
%K A095717 easy,nonn
%O A095717 1,1
%A A095717 Stefano Lanfranco (lastefano(AT)yahoo.it), Jul 08 2004
%E A095717 Definition edited by _Harvey P. Dale_, Apr 09 2018
%E A095717 More terms from _Amiram Eldar_, Jul 17 2019