cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095729 A002260 squared, as an infinite lower triangular matrix, read by rows.

This page as a plain text file.
%I A095729 #24 Aug 13 2025 10:19:21
%S A095729 1,3,4,6,10,9,10,18,21,16,15,28,36,36,25,21,40,54,60,55,36,28,54,75,
%T A095729 88,90,78,49,36,70,99,120,130,126,105,64,45,88,126,156,175,180,168,
%U A095729 136,81,55,108,156,196,225,240,238,216,171,100,66,130,189,240,280,306,315,304
%N A095729 A002260 squared, as an infinite lower triangular matrix, read by rows.
%C A095729 Sum of terms in n-th row = A001296(n-1).
%C A095729 By columns, k; even columns sequences as f(x), x = 1, 2, 3...; = (k/2)x^2 + (k^2 - k/2)x. For example, terms in row 2, (A028552): 4, 10, 18, 28, 40...= x^2 + 3x; row 4 = 2x^2 + 14x, row 6 = 3x^2 + 33x, row 8 = 4x^2 + 60x...etc.
%C A095729 The number in the i-th row and j-th column (j<=i) of the squared matrix is j*(binomial[i + 1, 2] - binomial[j, 2]). - Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007
%e A095729 First few rows of the triangle are
%e A095729   1;
%e A095729   3, 4;
%e A095729   6, 10, 9;
%e A095729   10, 18, 21, 16;
%e A095729   15, 28, 36, 36, 25;
%e A095729   21, 40, 54, 60, 55, 36,
%e A095729   ...
%e A095729 [1 0 0 / 1 2 0 / 1 2 3]^2 = [1 0 0 / 3 4 0 / 6 10 9].
%e A095729 Next higher order matrix generates rows of the one lower order, plus the next row.
%e A095729 For example, the 4 X 4 matrix [1 0 0 0 / 1 2 0 0 / 1 2 3 0 / 1 2 3 4]^2 = [1 0 0 0 / 3 4 0 0 / 6 10 9 0 / 10 18 21 16].
%t A095729 FindRow[n_] := Module[{i = 0}, While[Binomial[i, 2] < n, i++ ]; i - 1]; FindCol[n_] := n - Binomial[FindRow[n], 2]; A095729[n_] := FindCol[n](Binomial[FindRow[n]+1, 2] - Binomial[FindCol[n], 2]); Table[A095729[i], {i, 1, 91}] (* Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007 *)
%Y A095729 Cf. A001296, A028552, A002260.
%K A095729 nonn,tabl
%O A095729 1,2
%A A095729 _Gary W. Adamson_, Jun 05 2004, Feb 17 2007
%E A095729 More terms from Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007
%E A095729 Edited by _N. J. A. Sloane_, Jul 03 2008 at the suggestion of _R. J. Mathar_