cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095738 Numbers that are coprime to sigma but are not prime powers.

This page as a plain text file.
%I A095738 #27 Jun 25 2019 18:35:20
%S A095738 21,35,36,39,50,55,57,63,65,75,77,85,93,98,100,111,115,119,129,133,
%T A095738 143,144,155,161,171,175,183,185,187,189,201,203,205,209,215,217,219,
%U A095738 221,225,235,237,242,245,247,253,259,265,275,279,291,299,301,305,309,319
%N A095738 Numbers that are coprime to sigma but are not prime powers.
%C A095738 Abundancy is defined as the ratio of the multiplicative sum-of-divisors function to the integer itself: abund(n) = sigma(n)/n. E.g., abund(10) = sigma(10) / 10 = (1+2+5+10) / 10 = 1.8 = 9 / 5.
%C A095738 Integers m and n are friendly if and only if they have the same abundancy. E.g., abund(12) = abund(234) = 7 / 3, so 12 and 234 are friends.
%C A095738 Integers which have no friends are called solitary.
%C A095738 The numbers in this sequence are solitary.
%C A095738 Compare abundancy to abundance as defined in A033880.
%H A095738 Amiram Eldar, <a href="/A095738/b095738.txt">Table of n, a(n) for n = 1..10000</a>
%H A095738 Claude W. Anderson and Dean Hickerson, <a href="http://www.jstor.org/stable/2318325">Advanced Problem 6020: Friendly Integers</a>, Amer. Math. Monthly, 1977, V84#1p65-6.
%H A095738 Walter Nissen, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;560ec1b3.0407">Primitive Friendly Integers and Exclusive Multiples</a>, 2004 post to NMBRTHRY mailing list
%t A095738 Select[Range[320], PrimeNu[#] > 1 && GCD[#, DivisorSigma[1, #]] == 1 &] (* _Amiram Eldar_, Jun 25 2019 *)
%o A095738 (PARI) isok(n) = (gcd(sigma(n), n) == 1) && (! isprime(n)) && (! (ispower(n, , &p) && isprime(p))); \\ _Michel Marcus_, Jan 24 2014
%Y A095738 Cf. A014567, A074902, A095739, A000203, A033880.
%K A095738 nonn
%O A095738 1,1
%A A095738 _Walter Nissen_, Jul 08 2004
%E A095738 Edited by _Franklin T. Adams-Watters_, Mar 06 2014