cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095750 "Degree" of the Sophie Germain primes (A005384).

Original entry on oeis.org

0, 0, 1, 2, 3, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Andrew S. Plewe, Jul 09 2004

Keywords

Comments

This sequence is derived from the special case of Cunningham chains of the first kind where every member of the chain is a Sophie Germain prime.
This sequence can be obtained by subtracting 2 from A074313 and then deleting all negative members. - David Wasserman, Sep 13 2007

Examples

			Entries 0, 0, 1, 2, 3 correspond to the Sophie Germain primes 2, 3, 5, 11, 23. 5 is degree 1 because 5 = (2 * 2) + 1 and 2 is also a Sophie Germain prime. Similarly, 11 = (5 * 2) + 1, therefore 11 is degree 2. 23 = (11 * 2) + 1, thus 23 is degree 3 and so on.
		

Crossrefs

Cf. A005384.

Extensions

More terms from David Wasserman, Sep 13 2007