This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095771 #8 Nov 16 2015 08:15:35 %S A095771 2,1,1,2,1,2,1,1,2,1,2,1,2,1,1,1,3,1,2,1,1,1,1,1,1,4,1,2,1,1,2,1,1,1, %T A095771 1,1,1,1,5,1,2,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,1,6,1,2,1,1,1,1,1,1,1,1, %U A095771 1,1,1,2,3,4,1,1,1,1,1,1,1,1,1,1,1,7,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A095771 Number of times n appears in A095769. %H A095771 J. Grytczuk, <a href="http://dx.doi.org/10.1016/j.disc.2003.10.022">Another variation on Conway's recursive sequence</a>, Discr. Math. 282 (2004), 149-161. %F A095771 a(n) = card{ k in N : A095769(k)=n }. %o A095771 (PARI) v=vector(1000,j,1);for(n=3,1000,g=v[v[v[v[n-1]]]]+v[n-v[v[v[n-1]]]];v[n]=g);a(n)=sum(i=1,3*n,if(v[i]-n,0,1)) %Y A095771 Cf. A004001, A093878, A095769, A095770, A051135. %K A095771 nonn %O A095771 1,1 %A A095771 _Benoit Cloitre_, Jun 05 2004