cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A096183 Index k in A095773 where a string of n identical values occurs.

Original entry on oeis.org

1, 2, 10, 22, 46, 76, 148, 232, 352, 487, 727, 991, 1279, 1643, 2035, 2455, 3095, 3775, 4495, 5350, 6250, 7195, 8515, 9895, 11335, 12835, 14551, 16333, 18181, 20095, 22255, 24487, 26791, 29167, 32261, 35446, 38722, 42089, 45813, 49635, 53555
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2004

Keywords

Crossrefs

Cf. A095773.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[a[n - 1]]]]; f[n_] := Block[{k = 1}, While[a[k] != a[k + n - 1] || a[k] == a[k + n], k++ ]; k]; Table[ f[n], {n, 42}]

A096182 Index of first occurrence of n in A095773.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 26, 30, 34, 38, 42, 46, 51, 56, 61, 66, 71, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2004

Keywords

Crossrefs

Cf. A095773.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[a[n - 1]]]]; f[n_] := Block[{k = 1}, While[a[k] != n, k++ ]; k]; Table[ f[n], {n, 60}]

A096184 Least index in A095773 which begins a string of n identical values.

Original entry on oeis.org

1, 2, 6, 10, 16, 22, 34, 46, 61, 76, 100, 124, 148, 176, 204, 232, 272, 312, 352, 397, 442, 487, 547, 607, 667, 727, 793, 859, 925, 991, 1063, 1135, 1207, 1279, 1370, 1461, 1552, 1643, 1741, 1839, 1937, 2035, 2140, 2245, 2350, 2455, 2583, 2711, 2839, 2967, 3095
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2004

Keywords

Crossrefs

Cf. A095773.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[a[n - 1]]]]; f[n_] := Block[{k = 1}, While[a[k] != a[k + n - 1] || a[k] == a[k + n], k++ ]; a[k]]; Table[ f[n], {n, 51}]

Formula

a(n)=A096183(n).
Showing 1-3 of 3 results.