This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095792 #13 Oct 19 2019 15:19:39 %S A095792 0,0,0,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0, %T A095792 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A095792 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A095792 a(n) = Z(n) - L(n), where Z=A072649 and L=A095791 are lengths of Zeckendorf and lazy Fibonacci representations in binary notation. %H A095792 Amiram Eldar, <a href="/A095792/b095792.txt">Table of n, a(n) for n = 0..10000</a> %F A095792 a(n)=0 if n is of the form F(k)-1 for k>=1 and a(n)=1 otherwise. %e A095792 Zeckendorf-binary of 11 is 10100; lazy-Fibonacci-binary of 11 is 1111. %e A095792 Thus Z(11)=5, L(11)=4 and a(11)=5-4=1. %t A095792 t1 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 0, 0, ___}]; (* maximal, lazy *) %t A095792 t2 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 1, 1, ___}]; (* minimal, Zeckendorf *) %t A095792 m = Map[Length, t2] - Take[Map[Length, t1], Length[t2]] (* A095792 *) %t A095792 (* _Peter J. C. Moses_, Mar 03 2015 *) %Y A095792 Cf. A000045, A072649, A095791. %K A095792 nonn %O A095792 0,1 %A A095792 _Clark Kimberling_, Jun 05 2004