This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095799 #17 May 24 2016 03:05:50 %S A095799 1,3,4,15,21,25,107,149,200,225,1054,1420,1909,2479,2704,13684,17814, %T A095799 23313,30439,38505,41209,224071,283592,360853,461015,587641,727920, %U A095799 769129,4471699,5535812,6881856,8590990,10758160,13443289,16370471,17139600 %N A095799 Bell triangle A011971 squared. %H A095799 Alois P. Heinz, <a href="/A095799/b095799.txt">Rows n = 1..45, flattened</a> %F A095799 Let M = the Bell triangle (A011971) as an infinite lower triangle matrix. Then T(n,k) = M^2[n,k]. %e A095799 T(3,2) = 21, because M = [1; 1 2; 2 3 5; ...], M^2 = [1; 3 4; 15 21 25; ...] and M^2[3,2] = 21. %e A095799 Triangle begins: %e A095799 : 1; %e A095799 : 3, 4; %e A095799 : 15, 21, 25; %e A095799 : 107, 149, 200, 225; %e A095799 : 1054, 1420, 1909, 2479, 2704; %e A095799 : 13684, 17814, 23313, 30439, 38505, 41209; %p A095799 with(combinat): A:= proc(n, k) option remember; `if`(k<=n, add(binomial(k, i) *bell(n-k+i), i=0..k), 0) end: M:= proc(n) option remember; Matrix(n, (i, j)-> A(i-1, j-1)) end: T:= (n, k)-> (M(n)^2)[n, k]: seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Oct 12 2009 %t A095799 max = 10; M = Table[If[k > n, 0, Sum[Binomial[k, i] BellB[n-k+i], {i, 0, k} ]], {n, 0, max-1}, {k, 0, max-1}]; %t A095799 T = M.M; %t A095799 Table[T[[n]][[1 ;; n]], {n, 1, max}] // Flatten (* _Jean-François Alcover_, May 24 2016 *) %Y A095799 Cf. A011971. Diagonal gives A001247 for n>0. %K A095799 nonn,tabl %O A095799 1,2 %A A095799 _Gary W. Adamson_, Jun 06 2004 %E A095799 Edited, corrected and extended by _Alois P. Heinz_, Oct 12 2009