A095801 Square of Narayana triangle A001263: View A001263 as a lower triangular matrix. Then the square of that matrix is also lower triangular. Sequence gives this lower triangle, read by rows.
1, 2, 1, 5, 6, 1, 14, 30, 12, 1, 42, 140, 100, 20, 1, 132, 630, 700, 250, 30, 1, 429, 2772, 4410, 2450, 525, 42, 1, 1430, 12012, 25872, 20580, 6860, 980, 56, 1, 4862, 51480, 144144, 155232, 74088, 16464, 1680, 72, 1, 16796, 218790, 772200, 1081080, 698544
Offset: 1
Examples
The first 3 rows are 1; 2, 1; 5, 6, 1; since the first 3 rows of the Narayana triangle in matrix format are M = [1 0 0 / 1 1 0 / 1 3 1]. Then M^2 = [1 0 0 / 2 1 0 / 5 6 1]. Triangle starts: 1; 2, 1; 5, 6, 1; 14, 30, 12, 1; 42, 140, 100, 20, 1; ...
Programs
-
Mathematica
t[n_, k_] = Sum[1/(i*k)*(Binomial[i-1, k-1]*Binomial[i, k-1]* Binomial[n-1, i-1]*Binomial[n, i-1]), {i, k, n}]; Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]][[1;;50]] (* Jean-François Alcover, Jul 21 2011 *)
Extensions
Edited and extended by David Wasserman, Sep 24 2004
Comments