A095802 Upper right triangular matrix T^2, where T(i,j) = (-1)^i*(1-2*i) for 1 <= i <= j.
1, -2, 9, 3, -6, 25, -4, 15, -10, 49, 5, -12, 35, -14, 81, -6, 21, -20, 63, -18, 121, 7, -18, 45, -28, 99, -22, 169, -8, 27, -30, 77, -36, 143, -26, 225, 9, -24, 55, -42, 117, -44, 195, -30, 289, -10, 33, -40, 91, -54, 165, -52, 255, -34, 361, 11, -30, 65, -56, 135, -66, 221, -60, 323, -38, 441, -12, 39, -50, 105, -72, 187, -78, 285, -68, 399, -42, 529
Offset: 1
Examples
The matrix [ 1 0 0 0 ...] [ 1 -3 0 0 ...] [ 1 -3 5 0 ...] [ 1 -3 5 -7 ...] squared yields [ +1 0 0 0 ...] [ -2 +9 0 0 ...] [ +3 -6 25 0 ...] [ -4 15 -10 49 ...]; the lower left triangle gives this sequence: 1; -2, 9; 3, -6, 25; ...
Crossrefs
Programs
-
PARI
T=matrix(12,12,i,j,if(j>=i,(-1)^i*(1-2*i)))^2; concat(vector(#T,i,vecextract(T[,i],2^i-1))) \\ M. F. Hasler, Apr 18 2009
Formula
Diagonal elements are the odd squares: a(k(k+1)/2)=(2k+1)^2. First element in row k is (-1)^k*k. - M. F. Hasler, Apr 18 2009
Extensions
Edited and extended by M. F. Hasler, Apr 18 2009
Comments