cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095816 Number of permutations of 1..n with no three elements in correct or reverse order.

This page as a plain text file.
%I A095816 #28 Feb 19 2024 14:18:02
%S A095816 1,1,2,4,18,92,570,4082,33292,304490,3086890,34357812,416526730,
%T A095816 5463479106,77094352076,1164544912938,18749754351338,320544941916628,
%U A095816 5799226664694602,110695180631374114,2223242026407894732,46868311165318977130,1034758905785710599402
%N A095816 Number of permutations of 1..n with no three elements in correct or reverse order.
%C A095816 Counts permutations with the property that no subsequence i(i+1)(i+2) or (i+2)(i+1)i occurs.
%H A095816 Andrew Howroyd, <a href="/A095816/b095816.txt">Table of n, a(n) for n = 0..200</a>
%H A095816 W. M. Dymacek and I. Lambert, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Dymacek/dymacek5.html">Permutations Avoiding Runs of i, i+1, i+2 or i, i-1, i-2</a>, J. Int. Seq. 14 (2011) # 11.1.6, Table 1.
%H A095816 D. M. Jackson and R. C. Read, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002031183">A note on permutations without runs of given length</a>, Aequationes Math. 17 (1978), no. 2-3, 336-343.
%F A095816 G.f. Sum_{n>=0} n!*((2*x^m-x^(m+1)-x)/(x^m-1))^n where m = 3. - Ivana Jovovic ( ivana121(AT)EUnet.yu ), Nov 11 2007
%F A095816 From _Vaclav Kotesovec_, May 26 2023: (Start)
%F A095816 a(n) ~ n! * (1 - 2/n + 6/n^2 - 28/(3*n^3) - 10/(3*n^4) + 496/(15*n^5) + 1384/(45*n^6) - 79724/(315*n^7) - 259306/(315*n^8) + 3718094/(2835*n^9) + 33233992/(2025*n^10) + ...).
%F A095816 a(n) = (n-3)*a(n-1) + 3*(n-1)*a(n-2) + (2*n-5)*a(n-3) - (n-3)*a(n-4) - (2*n-13)*a(n-5) - (n-8)*a(n-6) + (n-6)*a(n-7).
%F A095816 (End)
%o A095816 (PARI) seq(n)={my(m=3); Vec(sum(k=0, n, k!*((2*x^m-x^(m+1)-x)/(x^m-1) + O(x*x^n))^k))} \\ _Andrew Howroyd_, Aug 31 2018
%Y A095816 Cf. A002464, A095817, A095818.
%Y A095816 Cf. A165963, A165964, A078628. [From _Isaac Lambert_, Oct 07 2009]
%K A095816 nonn
%O A095816 0,3
%A A095816 _Jonas Wallgren_, Jun 08 2004
%E A095816 More terms from Ivana Jovovic (ivana121(AT)EUnet.yu), Nov 11 2007
%E A095816 a(0)=1 prepended by _Max Alekseyev_, Jun 14 2011