cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095841 Prime powers having exactly one partition into two prime powers.

This page as a plain text file.
%I A095841 #21 Mar 04 2019 18:44:07
%S A095841 2,3,127,163,179,191,193,223,239,251,269,311,337,343,389,419,431,457,
%T A095841 491,547,557,569,599,613,653,659,673,683,719,739,787,821,839,853,883,
%U A095841 911,929,953,967,977,1117,1123,1201,1229,1249,1283,1289,1297,1303,1327,1381,1409,1423,1439,1451,1471,1481,1499,1607,1663,1681
%N A095841 Prime powers having exactly one partition into two prime powers.
%C A095841 A095840(A095874(a(n))) = 1.
%C A095841 A071330(a(n)) = 1.
%H A095841 Reinhard Zumkeller, <a href="/A095841/b095841.txt">Table of n, a(n) for n = 1..10000</a>
%p A095841 N:= 10^4: # to get all terms <= N
%p A095841 primepows:= {1,seq(seq(p^n, n=1..floor(log[p](N))),
%p A095841     p=select(isprime,[2,seq(2*k+1,k=1..(N-1)/2)]))}:
%p A095841 npp:= nops(primepows):
%p A095841 B:= Vector(N,datatype=integer[4]):
%p A095841 for n from 1 to npp do for m from n to npp do
%p A095841    j:= primepows[n]+primepows[m];
%p A095841    if j <= N then B[j]:= B[j]+1 fi;
%p A095841 od od:
%p A095841 select(t -> B[t] = 1, primepows); # _Robert Israel_, Nov 21 2014
%t A095841 max = 2000; ppQ[n_] := n == 1 || PrimePowerQ[n]; pp = Select[Range[max], ppQ]; lp = Length[pp]; Table[pp[[i]] + pp[[j]], {i, 1, lp}, {j, i, lp}] // Flatten // Select[#, ppQ[#] && # <= max&]& // Sort // Split // Select[#, Length[#] == 1&]& // Flatten (* _Jean-François Alcover_, Mar 04 2019 *)
%o A095841 (Haskell)
%o A095841 a095841 n = a095841_list !! (n-1)
%o A095841 a095841_list = filter ((== 1) . a071330) a000961_list
%o A095841 -- _Reinhard Zumkeller_, Jan 11 2013
%o A095841 (PARI) is(n)=if(n<127,return(n==2||n==3)); isprimepower(n) && sum(i=2,n\2,isprimepower(i)&&isprimepower(n-i))==1 \\ naive; _Charles R Greathouse IV_, Nov 21 2014
%o A095841 (PARI) is(n)=if(!isprimepower(n), return(0)); my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1 || n==2 \\ faster; _Charles R Greathouse IV_, Nov 21 2014
%o A095841 (PARI) has(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1
%o A095841 list(lim)=my(v=List([2])); forprime(p=2,lim,if(has(p), listput(v,p))); for(e=2,log(lim)\log(2), forprime(p=2,lim^(1/e), if(has(p^e), listput(v,p^e)))); Set(v) \\ _Charles R Greathouse IV_, Nov 21 2014
%Y A095841 Cf. A000961, A095842.
%Y A095841 Intersection of A208247 and A000961.
%Y A095841 Cf. A071330, A095840, A095874.
%K A095841 nonn
%O A095841 1,1
%A A095841 _Reinhard Zumkeller_, Jun 10 2004