This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095847 #21 Feb 16 2025 08:32:53 %S A095847 1,0,0,0,1736,0,0,0,6107895,458738443,0,117093979072,856605019673, %T A095847 5774401272921,96699253829728,5810550306096509,450529175803834166,0, %U A095847 44350645312365507266,271761692158955752596,2941647823169311845731 %N A095847 Lucas-Lehmer residues for Mersenne numbers with prime indices. %C A095847 If a(n) = 0, then 2^prime(n) - 1 is a prime greater than 3. - _Alonso del Arte_, May 09 2014 %C A095847 For n > 1, 2^prime(n) - 1 is prime if and only if a(n) = 0. - _Thomas Ordowski_, Aug 12 2018 %H A095847 Dennis Martin, <a href="/A095847/b095847.txt">Table of n, a(n) for n = 1..100</a> %H A095847 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Lucas-LehmerTest.html">Lucas-Lehmer Test</a> %F A095847 First, s(0) = 4, s(i) = s(i - 1)^2 - 2. Then, a(n) = s(prime(n) - 2) mod 2^prime(n) - 1. - _Alonso del Arte_, May 09 2014 %e A095847 The first term is 1 since 4 mod 3 = 1. - Zvi Mendlowitz (zvi113(AT)zahav.net.il), May 10 2006 %t A095847 (* First run the program for A003010 to define seqLucasLehmer *) Table[Mod[seqLucasLehmer[Prime[n] - 2], 2^Prime[n] - 1], {n, 20}] (* _Alonso del Arte_, May 09 2014 *) %Y A095847 Cf. A003010. %K A095847 nonn %O A095847 1,5 %A A095847 _Eric W. Weisstein_, Jun 08 2004