A095903 Lexical ordering of the lazy Fibonacci representations.
1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 10, 13, 15, 20, 11, 14, 16, 21, 17, 22, 25, 33, 18, 23, 26, 34, 28, 36, 41, 54, 19, 24, 27, 35, 29, 37, 42, 55, 30, 38, 43, 56, 46, 59, 67, 88, 31, 39, 44, 57, 47, 60, 68, 89, 49, 62, 70, 91, 75, 96, 109, 143, 32, 40, 45, 58, 48, 61, 69, 90, 50, 63
Offset: 1
Examples
Start with 1,2. Suffix the next two Fibonacci numbers, getting 1+2, 1+3; 2+3, 2+5. Suffix the next two Fibonacci numbers, getting 1+2+3, 1+2+5, 1+3+5, 1+3+8; 2+3+5, 2+3+8, 2+5+8, 2+5+13. Continue, obtaining row 1: 1,2 row 2: 3,4,5,7 row 3: 6,8,9,12,10,13,15,20 row 4: 11,14,16,21,17,22,25,33,18,23,26,34,28,36,41,54
Links
- Clark Kimberling, Table of n, a(n) for n = 1..4000
Programs
-
Mathematica
Map[Total,Fibonacci[Flatten[NestList[Flatten[Map[{Join[#,{Last[#]+1}],Join[#,{Last[#]+2}]}&,#],1]&,{{2},{3}},7],1]]] (* Peter J. C. Moses, Mar 06 2015 *)
-
PARI
a(n) = n++; my(x=0,y=0); for(i=0,logint(n,2)-1, y++;[x,y]=[y,x+y]; if(bittest(n,i), [x,y]=[y,x+y])); y; \\ Kevin Ryde, Jun 19 2021
Comments