A095971 If p(k) is the k-th prime, then the n-th set of 4 consecutive cousin prime pairs starts at p(a(n)).
25, 147, 149, 1828, 1866, 18814, 20033, 26397, 57344, 63654, 71722, 72982, 76928, 85072, 99739, 110985, 122244, 136645, 145805, 166884, 183130, 204206, 244875, 246292, 256139, 258721, 258723, 263243, 296747, 296749, 299538, 336778, 356245, 396811, 425385, 449918, 455824, 467844, 478051, 494380
Offset: 1
Keywords
Examples
a(1)=25: p(25)=97 and p(26)=101, the first cousin prime pair; p(27)=103 and p(28)=107, the second cousin prime pair; p(29)=109 and p(30)=113, the third cousin prime pair; p(31)=127 and p(32)=131, the fourth cousin prime pair.
Programs
-
Maple
P:= select(isprime,[2,seq(i,i=3..10^7,2)]): G:= P[2..-1]-P[1..-2]: select(t -> G[t] =4 and G[t+2] = 4 and G[t+4] = 4 and G[t+6] = 4, [$1..nops(G)-6]); # Robert Israel, May 15 2025
Extensions
More terms from Robert Israel, May 15 2025