This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A095977 #42 Oct 13 2024 07:09:08 %S A095977 2,4,14,32,82,188,438,984,2202,4852,10622,23056,49762,106796,228166, %T A095977 485448,1029162,2174820,4582670,9631360,20194802,42253724,88235734, %U A095977 183927992,382769082,795364308,1650380958,3420066544,7078742402,14634703372,30223843942,62356562216 %N A095977 Expansion of g.f. 2*x / ((1+x)^2*(1-2*x)^2). %C A095977 Number of 2 X 2 tiles in all tilings of a 3 X (n+1) rectangle with 1 X 1 and 2 X 2 square tiles. - _Emeric Deutsch_, Feb 18 2007 %C A095977 The terms of this sequence have a primitive divisor for all terms beyond the 4th if and only if n is not of the form 4k+2, for some nonnegative integer k. - Anthony Flatters (Anthony.Flatters(AT)uea.ac.uk), Aug 17 2007 %H A095977 G. C. Greubel, <a href="/A095977/b095977.txt">Table of n, a(n) for n = 1..1000</a> %H A095977 Luca Ferrari and Emanuele Munarini, <a href="http://arxiv.org/abs/1203.6792">Enumeration of edges in some lattices of paths</a>, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Ferrari/ferrari.html">J. Int. Seq. 17 (2014) #14.1.5</a> %H A095977 A. Flatters, <a href="http://arxiv.org/abs/0708.2190">Prime divisors of some Lehmer-Pierce sequences</a>, arXiv:0708.2190 [math.NT], 2007. %H A095977 R. P. Grimaldi, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Grimaldi/grimaldi5.html">Tilings, Compositions, and Generalizations</a>, J. Int. Seq. 13 (2010), 10.6.5, page 7. %H A095977 Luka Podrug, <a href="https://arxiv.org/abs/2410.03193">Horadam cubes</a>, arXiv:2410.03193 [math.CO], 2024. See p. 11. %H A095977 Helmut Prodinger, <a href="http://www.emis.de/journals/INTEGERS/papers/a8/a8.Abstract.html">On binary representations of integers with digits -1,0,1</a>, Integers 0 (2000), #A08. %H A095977 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-4,-4). %F A095977 a(n) = (1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n). %F A095977 a(n) = 2 * A073371(n-1). %F A095977 a(n) = Sum_{k=0..floor((n+1)/2)} k*2^k*binomial(n+1-k,k). - _Emeric Deutsch_, Feb 18 2007 %F A095977 E.g.f.: 2*(cosh(x/2) + sinh(x/2))*(15*x*cosh(3*x/2) + (8 + 9*x)*sinh(3*x/2))/27. - _Stefano Spezia_, Oct 12 2024 %p A095977 a:=n->n/9*2^(n+2)+1/27*2^(n+3)-2*n/9*(-1)^n-8/27*(-1)^n: seq(a(n),n=1..30); # _Emeric Deutsch_, Feb 18 2007 %t A095977 Table[(1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n) , {n,1,50}] (* _G. C. Greubel_, Dec 28 2016 *) %o A095977 (PARI) Vec(2*x / ((1+x)^2 * (1-2*x)^2) + O(x^50)) \\ _Michel Marcus_, Nov 07 2015 %Y A095977 Cf. A128099, A073371. %K A095977 nonn,easy %O A095977 1,1 %A A095977 _Ralf Stephan_, Jul 16 2004