This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096035 #16 Mar 11 2015 07:26:59 %S A096035 1,5,2,21,15,3,85,84,30,4,341,425,210,50,5,1365,2046,1275,420,75,6, %T A096035 5461,9555,7161,2975,735,105,7,21845,43688,38220,19096,5950,1176,140, %U A096035 8,87381,196605,196596,114660,42966,10710,1764,180,9,349525,873810,983025 %N A096035 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^4-M)/3, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n. %H A096035 Alois P. Heinz, <a href="/A096035/b096035.txt">Rows n = 1..141, flattened</a> %e A096035 Triangle begins: %e A096035 1; %e A096035 5, 2; %e A096035 21, 15, 3; %e A096035 85, 84, 30, 4; %e A096035 341, 425, 210, 50, 5; %e A096035 1365, 2046, 1275, 420, 75, 6; %p A096035 P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^4-M)/3 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # _Alois P. Heinz_, Oct 07 2009 %t A096035 rows=11; M[n_] := M[n] = Array[Binomial, {n, n}, {0, 0}]; P[n_] := (MatrixPower[ M[n], 4] - M[n])/3; Table[P[rows+1][[n+1, 1 ;; n]], {n, 1, rows}] // Flatten (* _Jean-François Alcover_, Mar 11 2015 *) %Y A096035 Cf. A007318. First column gives A002450. Row sums give A016127. %K A096035 nonn,tabl %O A096035 1,2 %A A096035 _Gary W. Adamson_, Jun 17 2004 %E A096035 Edited and more terms from _Alois P. Heinz_, Oct 07 2009