This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096039 #13 May 24 2016 03:11:25 %S A096039 1,6,2,31,18,3,156,124,36,4,781,780,310,60,5,3906,4686,2340,620,90,6, %T A096039 19531,27342,16401,5460,1085,126,7,97656,156248,109368,43736,10920, %U A096039 1736,168,8,488281,878904,703116,328104,98406,19656,2604,216,9,2441406 %N A096039 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^5-M)/4, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n. %e A096039 Triangle begins: %e A096039 1; %e A096039 6, 2; %e A096039 31, 18, 3; %e A096039 156, 124, 36, 4; %e A096039 781, 780, 310, 60, 5; %e A096039 3906, 4686, 2340, 620, 90, 6; %p A096039 P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^5-M)/4 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # _Alois P. Heinz_, Oct 07 2009 %t A096039 max = 11; M = Table[If[k > n, 0, Binomial[n, k]], {n, 0, max}, {k, 0, max} ]; %t A096039 T = (MatrixPower[M, 5] - M)/4; %t A096039 Table[T[[n + 1]][[1 ;; n]] , {n, 1, max}] // Flatten (* _Jean-François Alcover_, May 24 2016 *) %Y A096039 Cf. A007318. First column gives A003463. Row sums give A016129. %K A096039 nonn,tabl %O A096039 1,2 %A A096039 _Gary W. Adamson_, Jun 17 2004 %E A096039 Edited with more terms by _Alois P. Heinz_, Oct 07 2009