This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096054 #22 May 08 2025 02:23:16 %S A096054 1,91,3751,138811,5028751,181308931,6529545751,235085301451, %T A096054 8463265086751,304679288612371,10968470088963751,394865064451017691, %U A096054 14215143591303768751,511745180725868773411,18422826609078989373751,663221758853362301815531,23875983327059668074930751 %N A096054 a(n) = (36^n/6)*B(2n,1/6)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k) = B(k,0) is the k-th Bernoulli number. %H A096054 Colin Barker, <a href="/A096054/b096054.txt">Table of n, a(n) for n = 1..600</a> %H A096054 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (50,-553,1800,-1296). %F A096054 a(n) = (1/12)*(36^n - 2*9^n - 3*4^n+6). %F A096054 From _Colin Barker_, May 30 2020: (Start) %F A096054 G.f.: x*(1 - 6*x)*(1 + 47*x + 36*x^2) / ((1 - x)*(1 - 4*x)*(1 - 9*x)*(1 - 36*x)). %F A096054 a(n) = 50*a(n-1) - 553*a(n-2) + 1800*a(n-3) - 1296*a(n-4) for n>4. (End) %t A096054 a[n_] := 6^(2*n-1) * BernoulliB[2*n, 1/6] / BernoulliB[2*n]; Array[a, 15] (* _Amiram Eldar_, May 07 2025 *) %o A096054 (PARI) a(n)=(1/12)*36^n-(1/6)*9^n-(1/4)*4^n+1/2; %Y A096054 Cf. A083420, A096045, A096046, A096047, A096048, A096053. %K A096054 nonn,easy %O A096054 1,2 %A A096054 _Benoit Cloitre_, Jun 18 2004