This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096066 #13 Sep 23 2021 05:08:38 %S A096066 1,0,1,1,1,1,3,1,1,1,10,6,2,1,1,16,9,4,2,1,1,37,22,11,6,2,1,1,54,32, %T A096066 15,9,3,2,1,1,107,65,32,19,7,5,2,1,1,266,165,84,50,22,15,7,5,2,1,353, %U A096066 219,112,69,30,21,10,7,3,1,1,779,487,254,157,73,52,27,19,10,3,2,1,1270,795,420,261,124,90,49,36,19,7,5,1,1 %N A096066 Triangle read by rows, 1<=k<=n: T(n,k) is the number of occurrences of the k-th prime in partitions of the n-th prime into primes. %F A096066 T(n,n) = 1. %e A096066 n=5, A000040(5)=11 with A056768(5)=6 partitions into primes: %e A096066 T(5,1)=10 prime(1)=2 in 7+2+2=5+2+2+2=3+3+3+2=3+2+2+2+2, %e A096066 T(5,2)=6 prime(2)=3: in 5+3+3=3+3+3+2=3+2+2+2+2, %e A096066 T(5,3)=2 prime(3)=5: in 5+3+3=5+2+2+2, %e A096066 T(5,4)=1 prime(4)=7: in 7+2+2. %e A096066 Triangle begins: %e A096066 1; %e A096066 0, 1; %e A096066 1, 1, 1; %e A096066 3, 1, 1, 1; %e A096066 10, 6, 2, 1, 1; %e A096066 ... %t A096066 ip[p_] := ip[p] = IntegerPartitions[p, All, Select[Range[p], PrimeQ]] // Flatten; %t A096066 T[n_, k_] := Count[ip[Prime[n]], Prime[k]]; %t A096066 Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 23 2021 *) %Y A096066 Cf. A056768. %K A096066 nonn,tabl %O A096066 1,7 %A A096066 _Reinhard Zumkeller_, Jul 21 2004 %E A096066 Name modified by _Jean-François Alcover_, Sep 23 2021