This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096082 #30 Apr 16 2023 20:50:49 %S A096082 3,1093,11,1093,20771,66161,5,3,11,3,71,2693,863,29,29131,1093,3,5,3, %T A096082 281 %N A096082 Smallest odd prime p such that p^2 | n^(p-1) - 1. %C A096082 Similar to the sequence A039951 where p=2 is allowed. %C A096082 a(n^k) <= a(n) for any n,k>1. %C A096082 a(21) > 1.63*10^14 (see Fischer's link). %C A096082 For all nonnegative integers n and k, a(n^(n^k)) = a(n). (see puzzle 762 in the links). Also a(n) = 3 if and only if mod(n, 36) is in the set {1, 8, 10, 19, 26, 28, 35}. - _Farideh Firoozbakht_ and _Jahangeer Kholdi_, Nov 01 2014 %H A096082 C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php/FermatQuotient.html">Fermat quotient</a> %H A096082 Richard Fischer, <a href="http://www.fermatquotient.com/FermatQuotienten/">Fermat quotients B^(P-1) == 1 (mod P^2)</a> %H A096082 W. Keller and J. Richstein, <a href="http://www1.uni-hamburg.de/RRZ/W.Keller/FermatQuotient.html">Fermat quotients q_p(a) that are divisible by p</a> %H A096082 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_762.htm">Puzzle 762. Conjecture from Ribenboim's book</a>, The Prime Puzzles and Problems Connection. %F A096082 a(n) = A039951(n) for all n not of the form 4k+1, while a(4k+1) > A039951(4k+1) = 2. - _Alexander Adamchuk_, Dec 03 2006 %t A096082 f[n_] := Block[{k = 2}, While[k < 5181800 && PowerMod[n, Prime[k] - 1, Prime[k]^2] != 1, k++ ]; If[k == 5181800, 0, Prime[k]]]; Table[ f[n], {n, 70}] (* _Robert G. Wilson v_, Jul 23 2004 *) %o A096082 (PARI) for(n=2, 20, forprime(p=3, 1e9, if(Mod(n, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ _Felix Fröhlich_, Jul 24 2014 %Y A096082 Cf. A007663, A001220, A039951, A124121, 124122. %K A096082 nonn,more,hard %O A096082 1,1 %A A096082 _Lekraj Beedassy_, Jul 22 2004 %E A096082 Definition corrected by _Alexander Adamchuk_, Nov 27 2006 %E A096082 Edited by _Max Alekseyev_, Oct 07 2009 %E A096082 Edited and updated by _Max Alekseyev_, Jan 29 2012