This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096107 #34 Sep 05 2018 08:28:16 %S A096107 1,1,2,1,3,1,2,3,4,1,5,1,6,1,3,5,7,1,8,1,3,7,9,1,2,3,4,5,6,7,8,9,10,1, %T A096107 5,7,11,1,5,8,12,1,13,1,2,4,7,8,11,13,14,1,3,5,7,9,11,13,15,1,2,3,4,5, %U A096107 6,7,8,9,10,11,12,13,14,15,16,1,17,1,7,8,11,12,18,1,3,7,9,11,13,17,19,1,8 %N A096107 Triangle read by rows: row n lists cubic residues modulo n. %C A096107 Row n has A087692(n) terms. - _Robert Israel_, Jan 04 2015 %e A096107 1; %e A096107 1,2; %e A096107 1,3; %e A096107 1,2,3,4; %e A096107 1,5; %e A096107 1,6; %e A096107 1,3,5,7; %e A096107 1,8; %e A096107 1,3,7,9; %e A096107 Row 5 contains 1,2,3,4 because (in mod 5) 1^3 = 1, 3^3 = 2, 2^3 = 3, and 4^3 = 4. - _Geoffrey Critzer_, Jan 07 2015 %p A096107 for n from 2 to 30 do %p A096107 op({seq(`if`(igcd(i,n)=1,i^3 mod n,NULL),i=1..n-1)}) %p A096107 # if using Maple 11 or earlier, replace this by %p A096107 # op(sort(convert({seq(`if`(igcd(i,n)=1,i^3 mod n,NULL),i=1..n-1)},list))) %p A096107 od; # _Robert Israel_, Jan 04 2015 %t A096107 Table[Select[Range[n], %t A096107 CoprimeQ[#, n] && IntegerQ[PowerMod[#, 1/3, n]] &], {n, 1, 20}] // Grid %t A096107 (* _Geoffrey Critzer_, Jan 04 2015 *) %o A096107 (PARI) maybecubegcd1(n) = { for(x=2,n, b=floor(x-1); a=vector(b+1); for(y=1,b, z=y^3%x; if(z<>0, a[y]=z; ) ); s=vecsort(a); c=1; for(j=2,b+1, if(s[j]<>s[j-1], c++; if(gcd(s[j],x)==1,print1(s[j]",")) ) ); ) } %Y A096107 Cf. A087692, A096087. %K A096107 nonn,tabf %O A096107 2,3 %A A096107 _Cino Hilliard_, Jul 22 2004 %E A096107 Edited by _Don Reble_, May 07 2006