This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096131 #49 Nov 20 2021 08:02:36 %S A096131 1,7,105,2386,71890,2695652,120907185,6312179764,375971507406, %T A096131 25160695768715,1869031937691061,152603843369288819, %U A096131 13584174777196666630,1309317592648179024666,135850890740575408906465 %N A096131 Sum of the terms of the n-th row of triangle pertaining to A096130. %C A096131 The product of the terms of the n-th row is given by A034841. %C A096131 Collection of partial binary matrices: 1 to n rows of length n and a total of n entries set to one in each partial matrix. - _Olivier Gérard_, Aug 08 2016 %H A096131 Seiichi Manyama, <a href="/A096131/b096131.txt">Table of n, a(n) for n = 1..338</a> %F A096131 a(n) = Sum_{k=1..n} binomial(k*n, n). - _Reinhard Zumkeller_, Jan 09 2005 %F A096131 a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - _Reinhard Zumkeller_, Jan 09 2005 [corrected by _Seiichi Manyama_, Aug 17 2018] %F A096131 a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - _Vaclav Kotesovec_, Jun 06 2013 %e A096131 From _Seiichi Manyama_, Aug 18 2018: (Start) %e A096131 a(1) = (1/1!) * (1) = 1. %e A096131 a(2) = (1/2!) * (1*2 + 3*4) = 7. %e A096131 a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105. %e A096131 a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End) %p A096131 A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # _R. J. Mathar_, Apr 30 2007 %p A096131 seq(add((binomial(n*k,n)), k=0..n), n=1..15); # _Zerinvary Lajos_, Sep 16 2007 %t A096131 Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Jun 06 2013 *) %o A096131 (GAP) List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # _Muniru A Asiru_, Aug 12 2018 %o A096131 (PARI) a(n) = sum(k=1, n, binomial(k*n, n)); \\ _Michel Marcus_, Aug 20 2018 %Y A096131 Cf. A014062, A096130, A034841, A007318, A226391, A167009, A167008, A167010, A072034, A086331, A349470. %K A096131 nonn %O A096131 1,2 %A A096131 _Amarnath Murthy_, Jul 04 2004 %E A096131 More terms from _R. J. Mathar_, Apr 30 2007 %E A096131 Edited by _N. J. A. Sloane_, Sep 06 2008 at the suggestion of _R. J. Mathar_