This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096179 #24 Mar 13 2014 10:11:19 %S A096179 1,1,2,1,2,6,1,2,4,12,1,2,4,12,60,1,2,4,6,12,60,1,2,4,6,12,60,420,1,2, %T A096179 4,6,12,24,120,840,1,2,4,6,12,24,72,360,2520,1,2,4,6,12,24,60,120,360, %U A096179 2520,1,2,4,6,12,24,60,120,360,2520,27720,1,2,4,6,12,12,24,60,120,360 %N A096179 Triangle read by rows: T(n,k) is the smallest positive integer having at least k of the first n positive integers as divisors. %H A096179 Wikipedia, <a href="http://en.wikipedia.org/wiki/Table_of_divisors">Table of divisors</a>. %F A096179 T(n,k) = min { lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n } %e A096179 Triangle begins: %e A096179 1 %e A096179 1 2 %e A096179 1 2 6 %e A096179 1 2 4 12 %e A096179 1 2 4 12 60 %e A096179 1 2 4 6 12 60 %p A096179 with(combstruct): %p A096179 a096179_row := proc(n) local k,L,l,R,LCM,comb; %p A096179 R := NULL; LCM := ilcm(seq(i,i=[$1..n])); %p A096179 for k from 1 to n-1 do %p A096179 L := LCM; %p A096179 comb := iterstructs(Combination(n),size=k): %p A096179 while not finished(comb) do %p A096179 l := nextstruct(comb); %p A096179 L := min(L,ilcm(op(l))); %p A096179 od; %p A096179 R := R,L; %p A096179 od; %p A096179 R,LCM end; # _Peter Luschny_, Dec 06 2010 %t A096179 (* Triangular *) %t A096179 A096179[n_,k_]:=Min[LCM@@@Subsets[Range[n],{k}]]; %t A096179 A002024[n_]:=Floor[1/2+Sqrt[2*n]]; %t A096179 A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2]; %t A096179 (* Linear *) %t A096179 A096179[n_]:=A096179[n]=A096179[A002024[n],A002260[n]]; %t A096179 (* Enrique Pérez Herrero_, Dec 08 2010 *) %o A096179 (PARI) A096179(n,k)={ my(m=lcm(vector(k,i,i))); forvec(v=vector(k-1,i,[2,n]), m>lcm(v) & m=lcm(v), 2); m } \\ _M. F. Hasler_, Nov 30 2010 %Y A096179 Main diagonal is A003418. Minimum in column k is A061799(k). See also A094348, A096180. %K A096179 nonn,tabl %O A096179 1,3 %A A096179 _Matthew Vandermast_, Jun 19 2004