This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096235 #28 Jun 02 2025 12:51:48 %S A096235 0,2,2,2,3,6,6,11,18,31,49,87,155,253,427,781,1473,2703,5094,9592, %T A096235 18376,35100,67183,129119,249489,482224,930633,1803598,3502353, %U A096235 6813094,13271996,25892906,50583039,98948426,193629933,379398057,744508765,1461801309 %N A096235 Number of n-bit base-2 deletable primes. %C A096235 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. However, in base 2 we adopt the convention that 2 = 10 and 3 = 11 are deletable. %C A096235 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %e A096235 d base-2 d-digit deletable primes %e A096235 2 2=10, 3=11 %e A096235 3 5=101, 7=111 %e A096235 4 11=1011, 13=1101 %e A096235 5 19=10011, 23=10111, 29=11101 %e A096235 6 37=100101, 43=101011, 47=101111, 53=110101, 59=111011, 61=111101 %e A096235 7 73=1001001, 79=1001111, 83=1010011, 101=1100101, 107=1101011, 109=1101101 %t A096235 a = {0, 2}; d = {2, 3}; %t A096235 For[n = 3, n <= 15, n++, %t A096235 p = Select[Range[2^(n - 1), 2^n - 1], PrimeQ[#] &]; %t A096235 ct = 0; %t A096235 For[i = 1, i <= Length[p], i++, %t A096235 c = IntegerDigits[p[[i]], 2]; %t A096235 For[j = 1, j <= n, j++, %t A096235 t = Delete[c, j]; %t A096235 If[t[[1]] == 0, Continue[]]; %t A096235 If[MemberQ[d, FromDigits[t, 2]], AppendTo[d, p[[i]]]; ct++; %t A096235 Break[]]]]; %t A096235 AppendTo[a, ct]]; %t A096235 a (* _Robert Price_, Nov 11 2018 *) %o A096235 (Python) %o A096235 from sympy import isprime %o A096235 def ok(n, prevset): %o A096235 if not isprime(n): return False %o A096235 b = bin(n)[2:] %o A096235 bi = (b[:i]+b[i+1:] for i in range(len(b))) %o A096235 return any(t[0] != '0' and int(t, 2) in prevset for t in bi) %o A096235 def afind(terms): %o A096235 s, snxt = {2, 3}, set() %o A096235 print("0,", len(s), end=", ") %o A096235 for n in range(3, terms+1): %o A096235 for i in range(2**(n-1), 2**n): %o A096235 if ok(i, s): %o A096235 snxt.add(i) %o A096235 s, snxt = snxt, set() %o A096235 print(len(s), end=", ") %o A096235 afind(20) # _Michael S. Branicky_, Jan 14 2022 %Y A096235 Cf. A080608, A080603, A096236-A096246. %K A096235 nonn,base,more %O A096235 1,2 %A A096235 _Michael Kleber_, Feb 28 2003 %E A096235 a(19)-a(30) from _Ryan Propper_, Jul 18 2005 %E A096235 a(31)-a(33) from _Michael S. Branicky_, Jan 14 2022 %E A096235 a(34)-a(37) from _Michael S. Branicky_, May 30 2025 %E A096235 a(38) from _Michael S. Branicky_, Jun 02 2025