This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096236 #16 Jan 14 2022 10:34:30 %S A096236 1,2,4,7,13,24,38,72,122,226,400,684,1246,2381,4384,8330,15839,30617, %T A096236 58764,113987,221994,434498,852036,1673320,3296641,6509179 %N A096236 Number of n-digit base-3 deletable primes. %C A096236 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b. %C A096236 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %t A096236 b = 3; a = {1}; d = {2}; %t A096236 For[n = 2, n <= 10, n++, %t A096236 p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; %t A096236 ct = 0; %t A096236 For[i = 1, i <= Length[p], i++, %t A096236 c = IntegerDigits[p[[i]], b]; %t A096236 For[j = 1, j <= n, j++, %t A096236 t = Delete[c, j]; %t A096236 If[t[[1]] == 0, Continue[]]; %t A096236 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; %t A096236 Break[]]]]; %t A096236 AppendTo[a, ct]]; %t A096236 a (* _Robert Price_, Nov 12 2018 *) %o A096236 (Python) %o A096236 from sympy import isprime %o A096236 from sympy.ntheory.digits import digits %o A096236 def ok(n, prevset, base=3): %o A096236 if not isprime(n): return False %o A096236 s = "".join(str(d) for d in digits(n, base)[1:]) %o A096236 si = (s[:i]+s[i+1:] for i in range(len(s))) %o A096236 return any(t[0] != '0' and int(t, base) in prevset for t in si) %o A096236 def afind(terms): %o A096236 s, snxt, base = {2}, set(), 3 %o A096236 print(len(s), end=", ") %o A096236 for n in range(2, terms+1): %o A096236 for i in range(base**(n-1), base**n): %o A096236 if ok(i, s): %o A096236 snxt.add(i) %o A096236 s, snxt = snxt, set() %o A096236 print(len(s), end=", ") %o A096236 afind(13) # _Michael S. Branicky_, Jan 14 2022 %Y A096236 Cf. A080608, A080603, A096235-A096246. %K A096236 nonn,more,base %O A096236 1,2 %A A096236 _Michael Kleber_, Feb 28 2003 %E A096236 More terms from _John W. Layman_, Dec 14 2004 %E A096236 11 more terms from _Ryan Propper_, Jul 19 2005