A096237 Number of n-digit base-4 deletable primes.
2, 3, 9, 26, 75, 213, 615, 1853, 5854, 18664, 61248, 205300, 698575, 2409598, 8408050, 29657194
Offset: 1
Programs
-
Mathematica
b = 4; a = {2}; d = {2, 3}; For[n = 2, n <= 8, n++, p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; ct = 0; For[i = 1, i <= Length[p], i++, c = IntegerDigits[p[[i]], b]; For[j = 1, j <= n, j++, t = Delete[c, j]; If[t[[1]] == 0, Continue[]]; If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; Break[]]]]; AppendTo[a, ct]]; a (* Robert Price, Nov 12 2018 *)
-
Python
from sympy import isprime from sympy.ntheory.digits import digits def ok(n, prevset, base=4): if not isprime(n): return False s = "".join(str(d) for d in digits(n, base)[1:]) si = (s[:i]+s[i+1:] for i in range(len(s))) return any(t[0] != '0' and int(t, base) in prevset for t in si) def afind(terms): alst = [2] s, snxt, base = {2, 3}, set(), 4 print(len(s), end=", ") for n in range(2, terms+1): for i in range(base**(n-1), base**n): if ok(i, s): snxt.add(i) s, snxt = snxt, set() print(len(s), end=", ") afind(10) # Michael S. Branicky, Jan 17 2022
Extensions
a(6)-a(15) from Ryan Propper, Jul 19 2005
a(16) from Michael S. Branicky, Jan 17 2022
Comments