cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096237 Number of n-digit base-4 deletable primes.

Original entry on oeis.org

2, 3, 9, 26, 75, 213, 615, 1853, 5854, 18664, 61248, 205300, 698575, 2409598, 8408050, 29657194
Offset: 1

Views

Author

Michael Kleber, Feb 28 2003

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 4; a = {2}; d = {2, 3};
    For[n = 2, n <= 8, n++,
      p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &];
      ct = 0;
      For[i = 1, i <= Length[p], i++,
       c = IntegerDigits[p[[i]], b];
       For[j = 1, j <= n, j++,
        t = Delete[c, j];
        If[t[[1]] == 0, Continue[]];
        If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++;
         Break[]]]];
      AppendTo[a, ct]];
    a (* Robert Price, Nov 12 2018 *)
  • Python
    from sympy import isprime
    from sympy.ntheory.digits import digits
    def ok(n, prevset, base=4):
        if not isprime(n): return False
        s = "".join(str(d) for d in digits(n, base)[1:])
        si = (s[:i]+s[i+1:] for i in range(len(s)))
        return any(t[0] != '0' and int(t, base) in prevset for t in si)
    def afind(terms):
        alst = [2]
        s, snxt, base = {2, 3}, set(), 4
        print(len(s), end=", ")
        for n in range(2, terms+1):
            for i in range(base**(n-1), base**n):
                if ok(i, s):
                    snxt.add(i)
            s, snxt = snxt, set()
            print(len(s), end=", ")
    afind(10) # Michael S. Branicky, Jan 17 2022

Extensions

a(6)-a(15) from Ryan Propper, Jul 19 2005
a(16) from Michael S. Branicky, Jan 17 2022