This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096239 #15 Jan 17 2022 09:44:07 %S A096239 3,7,32,135,597,2787,13374,66071,335895,1743974,9216391,49420750, %T A096239 268312356 %N A096239 Number of n-digit base-6 deletable primes. %C A096239 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b. %C A096239 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %t A096239 b = 6; a = {3}; d = {2, 3, 5}; %t A096239 For[n = 2, n <= 5, n++, %t A096239 p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; %t A096239 ct = 0; %t A096239 For[i = 1, i <= Length[p], i++, %t A096239 c = IntegerDigits[p[[i]], b]; %t A096239 For[j = 1, j <= n, j++, %t A096239 t = Delete[c, j]; %t A096239 If[t[[1]] == 0, Continue[]]; %t A096239 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; %t A096239 Break[]]]]; %t A096239 AppendTo[a, ct]]; %t A096239 a (* _Robert Price_, Nov 12 2018 *) %o A096239 (Python) %o A096239 from sympy import isprime %o A096239 from sympy.ntheory.digits import digits %o A096239 def ok(n, prevset, base=6): %o A096239 if not isprime(n): return False %o A096239 s = "".join(str(d) for d in digits(n, base)[1:]) %o A096239 si = (s[:i]+s[i+1:] for i in range(len(s))) %o A096239 return any(t[0] != '0' and int(t, base) in prevset for t in si) %o A096239 def afind(terms): %o A096239 alst = [3] %o A096239 s, snxt, base = {2, 3, 5}, set(), 6 %o A096239 print(len(s), end=", ") %o A096239 for n in range(2, terms+1): %o A096239 for i in range(base**(n-1), base**n): %o A096239 if ok(i, s): %o A096239 snxt.add(i) %o A096239 s, snxt = snxt, set() %o A096239 print(len(s), end=", ") %o A096239 afind(8) # _Michael S. Branicky_, Jan 17 2022 %Y A096239 Cf. A080608, A080603, A096235-A096246. %K A096239 nonn,base,more %O A096239 1,1 %A A096239 _Michael Kleber_, Feb 28 2003 %E A096239 a(6)-a(11) from _Ryan Propper_, Jul 19 2005 %E A096239 a(12)-a(13) from _Michael S. Branicky_, Jan 17 2022