This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096241 #19 Jan 16 2022 13:03:34 %S A096241 4,14,50,238,1123,5792,30598,166056,927639,5308458,30984757 %N A096241 Number of n-digit base-8 deletable primes. %C A096241 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b. %C A096241 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %t A096241 b = 8; a = {4}; d = {2, 3, 5, 7}; %t A096241 For[n = 2, n <= 5, n++, %t A096241 p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; %t A096241 ct = 0; %t A096241 For[i = 1, i <= Length[p], i++, %t A096241 c = IntegerDigits[p[[i]], b]; %t A096241 For[j = 1, j <= n, j++, %t A096241 t = Delete[c, j]; %t A096241 If[t[[1]] == 0, Continue[]]; %t A096241 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; %t A096241 Break[]]]]; %t A096241 AppendTo[a, ct]]; %t A096241 a (* _Robert Price_, Nov 13 2018 *) %o A096241 (Python) %o A096241 from sympy import isprime %o A096241 def ok(n, prevset, base=8): %o A096241 if not isprime(n): return False %o A096241 s = oct(n)[2:] %o A096241 si = (s[:i]+s[i+1:] for i in range(len(s))) %o A096241 return any(t[0] != '0' and int(t, base) in prevset for t in si) %o A096241 def afind(terms): %o A096241 s, snxt = {2, 3, 5, 7}, set() %o A096241 print(len(s), end=", ") %o A096241 for n in range(2, terms+1): %o A096241 for i in range(8**(n-1), 8**n): %o A096241 if ok(i, s): %o A096241 snxt.add(i) %o A096241 s, snxt = snxt, set() %o A096241 print(len(s), end=", ") %o A096241 afind(7) # _Michael S. Branicky_, Jan 14 2022 %Y A096241 Cf. A080608, A080603, A096235-A096246, A322443. %K A096241 nonn,base,more %O A096241 1,1 %A A096241 _Michael Kleber_, Feb 28 2003 %E A096241 a(6)-a(10) from _Ryan Propper_, Jul 19 2005 %E A096241 a(11) from _D. S. McNeil_, Dec 08 2009