This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096243 #16 Jul 06 2023 09:32:52 %S A096243 4,16,94,585,3788,25768,182762,1340905,10135727,78580647,622188500 %N A096243 Number of n-digit base-10 deletable primes. %C A096243 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. %C A096243 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %t A096243 b = 10; a = {4}; d = {2, 3, 5, 7}; %t A096243 For[n = 2, n <= 5, n++, %t A096243 p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; %t A096243 ct = 0; %t A096243 For[i = 1, i <= Length[p], i++, %t A096243 c = IntegerDigits[p[[i]], b]; %t A096243 For[j = 1, j <= n, j++, %t A096243 t = Delete[c, j]; %t A096243 If[t[[1]] == 0, Continue[]]; %t A096243 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; %t A096243 Break[]]]]; %t A096243 AppendTo[a, ct]]; %t A096243 a (* _Robert Price_, Nov 13 2018 *) %o A096243 (Python) %o A096243 from sympy import isprime %o A096243 def ok(n, prevset): %o A096243 if not isprime(n): return False %o A096243 s = str(n) %o A096243 si = (s[:i]+s[i+1:] for i in range(len(s))) %o A096243 return any(t[0] != '0' and int(t) in prevset for t in si) %o A096243 def afind(terms): %o A096243 s, snxt = {2, 3, 5, 7}, set() %o A096243 print(len(s), end=", ") %o A096243 for n in range(2, terms+1): %o A096243 for i in range(10**(n-1), 10**n): %o A096243 if ok(i, s): %o A096243 snxt.add(i) %o A096243 s, snxt = snxt, set() %o A096243 print(len(s), end=", ") %o A096243 afind(6) # _Michael S. Branicky_, Jan 14 2022 %Y A096243 Cf. A080608, A080603, A096235-A096246. %K A096243 nonn,more,base %O A096243 1,1 %A A096243 _Michael Kleber_, Feb 28 2003 %E A096243 a(6)-a(9) from _Ryan Propper_, Jul 19 2005 %E A096243 a(10) from _Michael S. Branicky_, Jan 14 2022 %E A096243 a(11) from _Michael S. Branicky_, Jul 06 2023