cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096264 Primes that do not divide any terms of the sequence f given by f(1) = 2, f(n+1) = f(n)^2-f(n)+1.

This page as a plain text file.
%I A096264 #24 Mar 26 2019 19:57:10
%S A096264 5,11,17,19,23,29,31,37,41,47,53,59,61,67,71,79,83,89,97,101,103,107,
%T A096264 109,113,127,131,137,149,151,157,163,167,173,179,191,193,197,199,211,
%U A096264 223,227,229,233,239,241,251,257,263,269,271,277,281,283
%N A096264 Primes that do not divide any terms of the sequence f given by f(1) = 2, f(n+1) = f(n)^2-f(n)+1.
%H A096264 Jinyuan Wang, <a href="/A096264/b096264.txt">Table of n, a(n) for n = 1..5000</a>
%H A096264 R. W. K. Odoni, <a href="https://doi.org/10.1112/jlms/s2-32.1.1">On the prime divisors of the sequence w_{n+1} = 1+w_1 ... w_n</a>, J. London Math. Soc. 32 (1985), 1-11.
%p A096264 IsSylvester:=proc(p)
%p A096264 local x,S ;x:=2 : S:=NULL: while not member(x, [S]) do if x=0 then
%p A096264 return(true) fi; S := S ,x; x := (x^2-x+1) mod p od : return false end:
%p A096264 L:=NULL:p:=5:while p<1000 do if not IsSylvester(p) then L:=L,p fi : p:=nextprime(p) od:
%p A096264 L;
%p A096264 # _Robert FERREOL_, Feb 14 2019
%Y A096264 Complement of A007996 (in the primes).
%K A096264 nonn
%O A096264 1,1
%A A096264 _Jeffrey Shallit_, Aug 04 2004
%E A096264 Definition corrected (following a remark by _Don Reble_) by _M. F. Hasler_, Apr 24 2014