cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096278 Sums of successive sums of successive sums of successive primes.

This page as a plain text file.
%I A096278 #32 Feb 23 2025 14:43:29
%S A096278 33,50,72,96,120,144,172,206,240,274,308,336,364,402,444,480,514,548,
%T A096278 578,610,648,692,742,786,816,840,864,900,960,1024,1070,1108,1152,1196,
%U A096278 1236,1278,1320,1362,1404,1444,1488,1530,1560,1592,1650,1728,1790,1824
%N A096278 Sums of successive sums of successive sums of successive primes.
%C A096278 If we consider the m-fold iterated "take sums of successive terms" operation acting on the primes, then for all m >= 1, the first term is always odd (and the only odd term); it is prime for m=1, 2, 4, 8, 21, 24, 27, 31, 40, 98,..., but not for m=3 (the present sequence). [Edited by _M. F. Hasler_, Jun 02 2017]
%H A096278 Seiichi Manyama, <a href="/A096278/b096278.txt">Table of n, a(n) for n = 1..10000</a>
%F A096278 Let f(n) = prime(n) + prime(n+1) f1(n) = f(n)+f(n+1) : SS of order 1 Then f2(n) = f1(n)+f1(n) : SS of order 2 is the general term of this sequence.
%F A096278 a(n) = A096277(n) + A096277(n+1). - _M. F. Hasler_, Jun 02 2017
%F A096278 a(n) = prime(n)+3*prime(n+1)+3*prime(n+2)+prime(n+3). - _Robert Israel_, Dec 28 2022
%e A096278 The first two terms of SS order 1 is 13 and 20. 13+20 = 33 the first term of the sequence.
%p A096278 Ss:= L -> L[1..-2]+L[2..-1]:
%p A096278 (Ss@@3)([seq(ithprime(i),i=1..100)]); # _Robert Israel_, Dec 28 2022
%t A096278 Nest[ListConvolve[{1,1},#]&,Prime[Range[100]],3] (* _Paolo Xausa_, Oct 31 2023 *)
%o A096278 (PARI)
%o A096278 f(n) = return(prime(n)+prime(n+1))
%o A096278 f1(n) = return(f(n)+f(n+1))
%o A096278 f2(n) = return(f1(n)+f1(n+1))
%o A096278 g(n) = for(x=1,n,print1(f2(x)","))
%o A096278 (PARI) A096278(n,m=3)=for(k=0,m,prime(n+k)*binomial(m,k)) \\ or, to get a list:
%o A096278 A096278_vec(Nmax,m=3,v=primes(Nmax+m))=sum(k=0,m,binomial(m,k)*v[1+k,k-1-m]) \\ Alternatively, do m times v=v[^1]+v[^-1]. - _M. F. Hasler_, Jun 02 2017
%Y A096278 Cf. A000040, A096277, A001043.
%K A096278 easy,nonn
%O A096278 1,1
%A A096278 _Cino Hilliard_, Jun 22 2004