cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096280 Primes in A007443 (= binomial transform of primes).

This page as a plain text file.
%I A096280 #37 Nov 07 2023 05:02:07
%S A096280 2,5,13,83,2707,71475193,674721797,6245693407,118543624847,
%T A096280 82736199371081,72298621492552303967009812018997,
%U A096280 2454725173623452943975951834280921,59966692897276736774965300014477948187539553
%N A096280 Primes in A007443 (= binomial transform of primes).
%C A096280 Sum of reciprocals = 0.2893406979695919267175673140... Are these primes infinite?
%C A096280 The next term is too large to be displayed here. See A287915 for the indices k which yield these primes A007443(k). - _M. F. Hasler_, Jun 02 2017
%H A096280 Paolo Xausa, <a href="/A096280/b096280.txt">Table of n, a(n) for n = 1..20</a> (terms 1..17 from M. F. Hasler)
%F A096280 a(n) = A007443(A287915(n)). - _M. F. Hasler_, Jun 02 2017
%t A096280 A007443[n_]:=Sum[Binomial[n-1,k-1]Prime[k],{k,n}];
%t A096280 With[{upto=500},Select[Array[A007443,upto],PrimeQ]] (* or *)
%t A096280 Module[{upto=500,b},b=Prime[Range[upto]];Join[{2},Select[Table[First[b=ListConvolve[{1,1},b]],upto-1],PrimeQ]]] (* Paolo Xausa, Oct 31 2023 *)
%o A096280 (PARI) \\ n = terms to add, m = order.
%o A096280 sucsumspr(n,m) = { local(a,b,i,j,k,sr); sr=0; a = primes(1001); b = vector(1001); for(i=1,m, for(j=1,n+n, b[j] = a[j]+ a[j+1]; ); a=b; if(isprime(a[1]),print1(a[1]",");sr+=1.0/a[1]); ); print(); print(sr); }
%o A096280 (PARI) for(n=1,999, ispseudoprime(A007443(n))&&print1(A007443(n)",")) \\ _M. F. Hasler_, Jun 02 2017
%Y A096280 Cf. A007443, A287915, A001043, A096277, A096278, A096279.
%Y A096280 See A287915 for the corresponding indices of A007443.
%K A096280 nonn
%O A096280 1,1
%A A096280 _Cino Hilliard_, Jun 23 2004
%E A096280 Definition corrected, initial term 2 added, and edited by _M. F. Hasler_, Jun 02 2017
%E A096280 Name simplified by _Paolo Xausa_, Nov 05 2023