This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096290 #13 Mar 13 2024 11:01:39 %S A096290 216,5400,10584,26136,36504,62424,77976,114264,181656,207576,264600, %T A096290 295704,363096,399384,477144,606744,653400,751896,803736,912600, %U A096290 969624,1088856,1149984,1151064,1280664,1348056,1488024,1560600,1710936,1788696,1949400,2032344,2203416 %N A096290 Prime power perfect numbers: If n = Product p_i^r_i let PPsigma(n) = Product {Sum p_i^s_i, 2<=s_i<=r_i, s_i is prime}; sequence gives numbers k such that PPsigma(k) = 2*k. %H A096290 Amiram Eldar, <a href="/A096290/b096290.txt">Table of n, a(n) for n = 1..1000</a> %e A096290 5400 is in the sequence because 5400 = 2^3*3^3*5^2 and (2^2+2^3)*(3^2+3^3)*(5^2) = 2*5400. %p A096290 PPsigma := proc(n) %p A096290 option remember; %p A096290 local a, pe, p, e,f,i ; %p A096290 a := 1 ; %p A096290 for pe in ifactors(n)[2] do %p A096290 p := op(1, pe) ; %p A096290 e := op(2, pe) ; %p A096290 f := 0 ; %p A096290 for i from 2 to e do %p A096290 if isprime(i) then %p A096290 f := f+p^i ; %p A096290 end if; %p A096290 end do: %p A096290 a := a*f ; %p A096290 end do; %p A096290 a ; %p A096290 end proc: %p A096290 for n from 1 do %p A096290 if PPsigma(n) = 2*n then %p A096290 print(n) ; %p A096290 end if; %p A096290 end do: # _R. J. Mathar_, Mar 13 2024 %t A096290 f[p_, e_] := Plus @@ (p^Select[Range[e], PrimeQ]); s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* _Amiram Eldar_, Sep 19 2022 *) %Y A096290 Cf. A100509. %K A096290 nonn %O A096290 1,1 %A A096290 _Yasutoshi Kohmoto_, Jun 24 2004 %E A096290 Corrected and extended by _Farideh Firoozbakht_, Nov 17 2004 %E A096290 More terms from _Amiram Eldar_, Sep 19 2022