A096303 Number of iterations of n -> n + (number of 1's in binary representation of n) needed for the trajectory of n to join the trajectory of A010062.
0, 0, 0, 1, 0, 4, 0, 3, 2, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 6, 0, 2, 5, 0, 4, 1, 0, 3, 2, 0, 3, 2, 1, 1, 0, 5, 0, 2, 4, 0, 3, 1, 0, 2, 7, 0, 7, 1, 6, 1, 0, 5, 3, 0, 2, 4, 2, 1, 0, 3, 1, 6, 0, 0, 2, 0, 1, 5, 0, 2, 4, 0, 3, 1, 0, 2, 5, 0, 5, 1, 4, 1, 0, 3, 10, 0, 2, 2, 9, 1, 0, 1, 8, 1, 0, 8, 0, 7, 7, 0, 6, 6, 6, 0
Offset: 1
Examples
a(6)=4 because the trajectory for 1 (sequence A010062) starts 1->2->3->5->7->10->12->14->17->19->22->25... and the trajectory for 6 starts 6->8->9->11->14->17->19->22->25->28->31->36... so the sequence beginning with 6 joins A010062 after 4 steps.
Links
Programs
-
PARI
a(n) = { my (o=1); for (k=0, oo, while (o
Rémy Sigrist, Apr 05 2020
Comments