cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A096316 Given the number wheel 0,1,2,3,4,5,6,7,8,9 then starting with 2, the next number is a prime p number of positions from the previous number found, for p=2,3,...

Original entry on oeis.org

4, 7, 2, 9, 0, 3, 0, 9, 2, 1, 2, 9, 0, 3, 0, 3, 2, 3, 0, 1, 4, 3, 6, 5, 2, 3, 6, 3, 2, 5, 2, 3, 0, 9, 8, 9, 6, 9, 6, 9, 8, 9, 0, 3, 0, 9, 0, 3, 0, 9, 2, 1, 2, 3, 0, 3, 2, 3, 0, 1, 4, 7, 4, 5, 8, 5, 6, 3, 0, 9, 2, 1, 8, 1, 0, 3, 2, 9, 0, 9, 8, 9, 0, 3, 2, 5, 4, 1, 2, 5, 2, 1, 8, 9, 8, 1, 0, 1, 4, 5, 2, 9, 2, 1, 2
Offset: 0

Views

Author

Cino Hilliard, Aug 02 2004

Keywords

Comments

Conjecture: This sequence carried to infinity is non-repeating and non-terminating. If we concatenate the numbers and introduce a decimal point somewhere, we will get an irrational number.

Examples

			Imagine a number wheel 0,1,2,3,4,5,6,7,8,9 like the numbers on an odometer. The first prime in the wheel is 2. Counting from 2, the next number is 2 positions beyond 2 which is 4; counting 3 positions from 4, we get 7; counting 5 positions from 7 (when we hit 9, we go to 0) we get 2. 4,7,2 are the first 3 terms in the table.
		

Crossrefs

Cf. A096319.

Programs

  • Mathematica
    a[-2] = 2; a[n_] := a[n] = Mod[a[n - 1] + Prime[n + 2], 10]; Array[a, 105, -1] (* Robert G. Wilson v, Mar 10 2013 *)
  • PARI
    f(n) = x=2;forprime(p=2,n,x=(x%10+p)%10;print1(x","))

Formula

n=2, n = (n mod 10 + p)%10 where p is prime = 2, 3, 5...
Showing 1-1 of 1 results.