cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096371 Arithmetic derivative of n-th partition number.

This page as a plain text file.
%I A096371 #14 Apr 04 2025 06:30:10
%S A096371 0,0,1,1,1,1,1,8,13,31,41,92,18,1,162,368,131,324,167,483,299,1788,
%T A096371 841,256,1905,1179,3680,2607,2769,1383,7484,4065,4664,10101,8627,8030,
%U A096371 1,5135,10538,55107,42077,25514,31443,90990,33270,46823,89849,106449,70151
%N A096371 Arithmetic derivative of n-th partition number.
%H A096371 Alois P. Heinz, <a href="/A096371/b096371.txt">Table of n, a(n) for n = 0..3000</a>
%F A096371 a(n) = A003415(A000041(n)); a(A049575(n)) = 1.
%p A096371 a:= n->(p->p*add(i[2]/i[1], i=ifactors(p)[2]))(combinat[numbpart](n)):
%p A096371 seq(a(n), n=0..100);  # _Alois P. Heinz_, Jun 04 2015
%t A096371 a[n_] := If[n<2, 0, Function[p, p*Sum[i[[2]]/i[[1]], {i, FactorInteger[p]}]][PartitionsP[n]]];
%t A096371 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Apr 04 2025, after _Alois P. Heinz_ *)
%K A096371 nonn
%O A096371 0,8
%A A096371 _Reinhard Zumkeller_, Jul 19 2004