This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096379 #51 Sep 08 2022 08:45:14 %S A096379 0,1,1,5,7,11,13,13,21,23,27,35,37,37,41,51,53,57,65,65,69,73,75,85, %T A096379 95,97,101,103,95,109,121,129,127,137,143,145,153,157,161,171,169,179, %U A096379 187,191,185,187,207,221,223,223,231,229,235,245,251,261,263,267,275,271 %N A096379 a(n) = prime(n) + prime(n+1) - prime(n+2). %C A096379 Sequence is non-monotonic: see, e.g., a(29), a(33), and a(41). - _Zak Seidov_, Jan 21 2013 %C A096379 Ishikawa proved that a(n) > 0 for n > 1. - _Jonathan Sondow_, Feb 13 2014 %H A096379 Michel Marcus, <a href="/A096379/b096379.txt">Table of n, a(n) for n = 1..5000</a> (terms 1..1000 from Zak Seidov) %H A096379 Heihachiro Ishikawa, <a href="http://www.jstor.org/stable/43700113">Über die Verteilung der Primzahlen</a>, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A 2 (1934), 27-40. %F A096379 a(n) = A001043(n) - A000040(n+2). - _A.H.M. Smeets_, Aug 17 2019 %F A096379 a(n) = A000040(n) - A001223(n+1). - _Jon Maiga_, Aug 17 2019 %e A096379 a(1) = prime(1) + prime(2) - prime(3) = 2 + 3 - 5 = 0. %e A096379 a(25) = prime(25) + prime(26) - prime(27) = 97 + 101 - 103 = 95. %p A096379 A096379 := proc(n) %p A096379 ithprime(n+1)+ithprime(n)-ithprime(n+2) ; %p A096379 end proc: %p A096379 seq(A096379(n),n=1..80) ; # _R. J. Mathar_, Sep 10 2016 %t A096379 #[[1]] + #[[2]] - #[[3]] & /@ Partition[Prime[Range[62]], 3, 1] (* _Zak Seidov_, Apr 09 2013 *) %t A096379 ListConvolve[{-1,1,1},Prime[Range[100]]] (* _Zak Seidov_, Dec 03 2014 *) %o A096379 (PARI) g(n)=for(x=1,n,print1(prime(x)+prime(x+1)-prime(x+2)",")) %o A096379 (PARI) first(n)=my(v=vector(n),p=2,q=3,k); forprime(r=5,, if(k++>n, break); v[k]=p+q-r; p=q; q=r); v \\ _Charles R Greathouse IV_, Oct 03 2017 %o A096379 (Magma) [NthPrime(n)+NthPrime(n+1)-NthPrime(n+2):n in [1..60]]; // _Marius A. Burtea_, Aug 17 2019 %Y A096379 Cf. A000040, A001043, A001223. %K A096379 nonn,easy %O A096379 1,4 %A A096379 _Cino Hilliard_, Aug 04 2004 %E A096379 Edited by _Zak Seidov_, Aug 27 2012 %E A096379 Definition reworded by _N. J. A. Sloane_, Aug 27 2012