cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096414 Decimal expansion of (Pi/e)^(1/2).

This page as a plain text file.
%I A096414 #15 May 03 2015 14:28:33
%S A096414 1,0,7,5,0,4,7,6,0,3,4,9,9,9,2,0,2,3,8,7,2,2,7,5,5,8,6,0,2,4,8,2,0,8,
%T A096414 5,1,1,7,7,5,1,3,7,0,4,6,2,2,4,7,2,5,7,7,0,7,7,1,6,6,7,2,3,7,2,6,3,6,
%U A096414 4,4,5,8,1,5,3,9,3,1,5,8,0,7,3,0,7,2,6,0,5,9,9,5,2,6,0,9,7,0,2,8,4,7,5,5,9
%N A096414 Decimal expansion of (Pi/e)^(1/2).
%H A096414 Stanislav Sykora, <a href="/A096414/b096414.txt">Table of n, a(n) for n = 1..2000</a>
%F A096414 Equals the square root of A061382.
%F A096414 Equals integral[-inf..+inf](exp(-x^2)*cos(k*x)) = sqrt(Pi/exp(k^2/2)), for k = sqrt(2). - _Stanislav Sykora_, Apr 28 2015
%e A096414 1.07504760349992023872275586024820851177...
%p A096414 evalf(Pi/exp(1)); # _R. J. Mathar_, Oct 03 2011
%t A096414 RealDigits[N[Sqrt[Pi/E], 120]] (* _Michael De Vlieger_, Apr 30 2015 *)
%o A096414 (PARI) a = sqrt(Pi/exp(1)) \\ _Stanislav Sykora_, Apr 28 2015
%Y A096414 Cf. A000796, A001113, A061382, A257530.
%K A096414 cons,nonn
%O A096414 1,3
%A A096414 _Mohammad K. Azarian_, Aug 07 2004