cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096419 Number of cyclically symmetric plane partitions (Macdonald's plane partition conjecture).

This page as a plain text file.
%I A096419 #16 Apr 17 2025 10:59:00
%S A096419 1,0,0,1,0,0,2,1,0,2,1,0,4,3,0,5,4,0,8,8,0,10,11,0,15,19,1,20,27,1,28,
%T A096419 43,3,36,61,6,50,92,11,64,129,18,86,189,33,110,262,51,145,374,84,184,
%U A096419 514,129,238,718,201,300,977,300,384,1344,454,482,1812,661,609,2459,972
%N A096419 Number of cyclically symmetric plane partitions (Macdonald's plane partition conjecture).
%C A096419 Equals A048141 (C3v symmetry) + 2* A048142 (only C3 symmetry).
%D A096419 Andrews, G. E. "Plane Partitions (III): The Weak Macdonald Conjecture." Invent. Math. 53, 193-225, 1979.
%D A096419 Mills, W. H.; Robbins, D. P.; and Rumsey, H. Jr., Proof of the Macdonald Conjecture. Invent. Math. 66, 73-87, 1982.
%H A096419 Wouter Meeussen, <a href="/A096419/b096419.txt">Table of n, a(n) for n=1..151</a>
%H A096419 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MacdonaldsPlanePartitionConjecture.html">Macdonald's Plane Partition Conjecture</a>
%F A096419 See Mathematica code for a formula.
%t A096419 len=151;m=Ceiling[len/3];mcdon=Rest@CoefficientList[Series[Product[(1-q^(3i-1))/(1-q^(3i-2)) Product[(1-q^(3(m+i+j-1)))/(1-q^(3(2i+j-1))), {j, i, m}], {i, 1, m}], {q, 0, len}], q] (* updated by _Wouter Meeussen_, Apr 15 2025 *)
%Y A096419 Cf. A047993, A048141, A048142.
%K A096419 nonn
%O A096419 1,7
%A A096419 _Wouter Meeussen_, Aug 08 2004