This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096419 #16 Apr 17 2025 10:59:00 %S A096419 1,0,0,1,0,0,2,1,0,2,1,0,4,3,0,5,4,0,8,8,0,10,11,0,15,19,1,20,27,1,28, %T A096419 43,3,36,61,6,50,92,11,64,129,18,86,189,33,110,262,51,145,374,84,184, %U A096419 514,129,238,718,201,300,977,300,384,1344,454,482,1812,661,609,2459,972 %N A096419 Number of cyclically symmetric plane partitions (Macdonald's plane partition conjecture). %C A096419 Equals A048141 (C3v symmetry) + 2* A048142 (only C3 symmetry). %D A096419 Andrews, G. E. "Plane Partitions (III): The Weak Macdonald Conjecture." Invent. Math. 53, 193-225, 1979. %D A096419 Mills, W. H.; Robbins, D. P.; and Rumsey, H. Jr., Proof of the Macdonald Conjecture. Invent. Math. 66, 73-87, 1982. %H A096419 Wouter Meeussen, <a href="/A096419/b096419.txt">Table of n, a(n) for n=1..151</a> %H A096419 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MacdonaldsPlanePartitionConjecture.html">Macdonald's Plane Partition Conjecture</a> %F A096419 See Mathematica code for a formula. %t A096419 len=151;m=Ceiling[len/3];mcdon=Rest@CoefficientList[Series[Product[(1-q^(3i-1))/(1-q^(3i-2)) Product[(1-q^(3(m+i+j-1)))/(1-q^(3(2i+j-1))), {j, i, m}], {i, 1, m}], {q, 0, len}], q] (* updated by _Wouter Meeussen_, Apr 15 2025 *) %Y A096419 Cf. A047993, A048141, A048142. %K A096419 nonn %O A096419 1,7 %A A096419 _Wouter Meeussen_, Aug 08 2004