A096432 Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n; sequence gives n such that 1 + max{e_2, e_3, ...} is a prime.
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..881 from R. J. Mathar)
Programs
-
Maple
(Maple code for this entry and A074661) M:=2000; ans1:=[]; ans2:=[]; for n from 1 to M do t1:=op(2..-1, ifactors(n)); t2:=nops(t1); m1:=0; for i from 1 to t2 do m1:=max(m1,t1[i][2]); od: if isprime(1+m1) then ans1:=[op(ans1),n]; fi; if isprime(m1) then ans2:=[op(ans2),n]; fi; od:
-
Mathematica
Select[Range[2, 100], PrimeQ[1 + Max[FactorInteger[#][[;; , 2]]]] &] (* Amiram Eldar, Oct 18 2020 *)
-
PARI
isA096432(n) = if(n<2,0,isprime(vecmax(factor(n)[,2])+1))
Comments