cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.

This page as a plain text file.
%I A096441 #41 Mar 17 2025 11:44:52
%S A096441 1,2,2,4,3,7,5,11,8,17,12,26,18,37,27,54,38,76,54,106,76,145,104,199,
%T A096441 142,266,192,357,256,472,340,621,448,809,585,1053,760,1354,982,1740,
%U A096441 1260,2218,1610,2818,2048,3559,2590,4485,3264,5616,4097,7018,5120,8728,6378
%N A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.
%C A096441 Number of partitions of n such that all differences between successive parts are even, see example. [_Joerg Arndt_, Dec 27 2012]
%C A096441 Number of partitions of n where either all parts are odd or all parts are even. - _Omar E. Pol_, Aug 16 2013
%C A096441 From _Gus Wiseman_, Jan 13 2022: (Start)
%C A096441 Also the number of integer partitions of n with all even multiplicities (or run-lengths) except possibly the first. These are the conjugates of the partitions described by Joerg Arndt above. For example, the a(1) = 1 through a(8) = 11 partitions are:
%C A096441   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%C A096441        (11)  (111)  (22)    (311)    (33)      (322)      (44)
%C A096441                     (211)   (11111)  (222)     (511)      (422)
%C A096441                     (1111)           (411)     (31111)    (611)
%C A096441                                      (2211)    (1111111)  (2222)
%C A096441                                      (21111)              (3311)
%C A096441                                      (111111)             (22211)
%C A096441                                                           (41111)
%C A096441                                                           (221111)
%C A096441                                                           (2111111)
%C A096441                                                           (11111111)
%C A096441 (End)
%D A096441 A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.
%H A096441 Alois P. Heinz, <a href="/A096441/b096441.txt">Table of n, a(n) for n = 1..1000</a>
%H A096441 Karin Baur and Nolan Wallach, <a href="http://dx.doi.org/10.1090/S1088-4165-05-00262-1">Nice parabolic subalgebras of reductive Lie algebras</a>, Represent. Theory 9 (2005), 1-29.
%H A096441 A. G. Elashvili and V. G. Kac, <a href="http://arxiv.org/abs/math-ph/0312030">Classification of good gradings of simple Lie algebras</a>, arXiv:math-ph/0312030, 2002-2004.
%H A096441 Sergi Elizalde and Emeric Deutsch, <a href="https://doi.org/10.54550/ECA2022V2S1R7">The degree of asymmetry of a sequence</a>, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, U(0,z).
%F A096441 G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
%F A096441 G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
%F A096441 a(2*n) = A000041(n) + A000009(2*n); a(2*n-1) = A000009(2*n-1). - _Vladeta Jovovic_, Aug 11 2004
%F A096441 a(n) = A000009(n) + A035363(n) = A000041(n) - A006477(n). - _Omar E. Pol_, Aug 16 2013
%e A096441 From _Joerg Arndt_, Dec 27 2012: (Start)
%e A096441 There are a(10)=17 partitions of 10 where all differences between successive parts are even:
%e A096441 [ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
%e A096441 [ 2]  [ 2 2 2 2 2 ]
%e A096441 [ 3]  [ 3 1 1 1 1 1 1 1 ]
%e A096441 [ 4]  [ 3 3 1 1 1 1 ]
%e A096441 [ 5]  [ 3 3 3 1 ]
%e A096441 [ 6]  [ 4 2 2 2 ]
%e A096441 [ 7]  [ 4 4 2 ]
%e A096441 [ 8]  [ 5 1 1 1 1 1 ]
%e A096441 [ 9]  [ 5 3 1 1 ]
%e A096441 [10]  [ 5 5 ]
%e A096441 [11]  [ 6 2 2 ]
%e A096441 [12]  [ 6 4 ]
%e A096441 [13]  [ 7 1 1 1 ]
%e A096441 [14]  [ 7 3 ]
%e A096441 [15]  [ 8 2 ]
%e A096441 [16]  [ 9 1 ]
%e A096441 [17]  [ 10 ]
%e A096441 (End)
%p A096441 b:= proc(n, i) option remember; `if`(i>n, 0,
%p A096441       `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
%p A096441        b(n-i*j, i+1), 0), j=0..n/i))
%p A096441     end:
%p A096441 a:= n-> b(n, 1):
%p A096441 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 26 2014
%t A096441 (* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
%t A096441 Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
%t A096441 a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* _Jean-François Alcover_, Mar 17 2014, after _Vladeta Jovovic_ *)
%t A096441 Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* _Gus Wiseman_, Jan 13 2022 *)
%o A096441 (PARI) my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ _Joerg Arndt_, Jan 17 2016
%Y A096441 Bisections are A078408 and A096967.
%Y A096441 The complement in partitions is counted by A006477
%Y A096441 A version for compositions is A016116.
%Y A096441 A pointed version is A035363, ranked by A066207.
%Y A096441 A000041 counts integer partitions.
%Y A096441 A025065 counts palindromic partitions.
%Y A096441 A027187 counts partitions with even length/maximum.
%Y A096441 A035377 counts partitions using multiples of 3.
%Y A096441 A058696 counts partitions of even numbers, ranked by A300061.
%Y A096441 A340785 counts factorizations into even factors.
%Y A096441 Cf. A000009, A002865, A027383, A035457, A117298, A117989, A168021, A274230, A345170, A349060, A349061.
%K A096441 nonn
%O A096441 1,2
%A A096441 Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004