This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A096443 #30 Aug 06 2024 09:35:15 %S A096443 1,1,2,2,3,4,5,5,7,9,11,15,7,12,16,21,26,36,52,11,19,29,38,31,52,74, %T A096443 66,92,135,203,15,30,47,64,57,98,141,109,137,198,296,249,371,566,877, %U A096443 22,45,77,105,97,171,250,109,212,269,392,592,300,444,560,850,1315,712,1075 %N A096443 Number of partitions of a multiset whose signature is the n-th partition (in Mathematica order). %C A096443 The signature of a multiset is the partition consisting of the multiplicities of its elements; e.g., {a,a,a,b,c} is represented by [3,1,1]. The Mathematica order for partitions orders by ascending number of total elements, then by descending numerical order of its representation. The list begins: %C A096443 n.....#elements.....n-th partition %C A096443 0.....0 elements:....[] %C A096443 1.....1 element:.....[1] %C A096443 2.....2 elements:....[2] %C A096443 3....................[1,1] %C A096443 4.....3 elements:....[3] %C A096443 5....................[2,1] %C A096443 6....................[1,1,1] %C A096443 7.....4 elements:....[4] %C A096443 8....................[3,1] %C A096443 9....................[2,2] %C A096443 10...................[2,1,1] %C A096443 11...................[1,1,1,1] %C A096443 12....5 elements:....[5] %C A096443 13...................[4,1] %C A096443 A000041 and A000110 are subsequences for conjugate partitions. A000070 and A035098 are also subsequences for conjugate partitions. - _Alford Arnold_, Dec 31 2005 %C A096443 A002774 and A020555 is another pair of subsequences for conjugate partitions. - _Franklin T. Adams-Watters_, May 16 2006 %H A096443 Jun Kyo Kim and Sang Guen Hahn, <a href="http://www.emis.de/journals/HOA/IJMMS/22/1213.pdf">Recursive Formulae for the Multiplicative Partition Function</a>, Internat. J. Math. & Math. Sci., 22(1) (1999), 213-216. %H A096443 A. Knopfmacher, M. E. Mays, <a href="https://citeseerx.ist.psu.edu/pdf/d7ed31ad7c11cad37442838d6614f658af539ef5">A survey of factorization counting functions</a>, International Journal of Number Theory, 1(4):563-581,(2005). See P(n) page 3. %e A096443 The 10th partition is [2,1,1]. The partitions of a multiset whose elements have multiplicities 2,1,1 - for example, {a,a,b,c} - are: %e A096443 {{a,a,b,c}} %e A096443 {{a,a,b},{c}} %e A096443 {{a,a,c},{b}} %e A096443 {{a,b,c},{a}} %e A096443 {{a,a},{b,c}} %e A096443 {{a,b},{a,c}} %e A096443 {{a,a},{b},{c}} %e A096443 {{a,b},{a},{c}} %e A096443 {{a,c},{a},{b}} %e A096443 {{b,c},{a},{a}} %e A096443 {{a},{a},{b},{c}} %e A096443 We see there are 11 partitions of this multiset, so a(10)=11. %e A096443 Also, a(n) is the number of distinct factorizations of A063008(n). For example, A063008(10) = 60 and 60 has 11 factorizations: 60, 30*2, 20*3, 15*4, 15*2*2, 12*5, 10*6, 10*3*2, 6*5*2, 5*4*3, 5*3*2*2 which confirms that a(10) = 11. %t A096443 MultiPartiteP[n : {___Integer?NonNegative}] := %t A096443 Block[{p, $RecursionLimit = 1024, firstPositive}, %t A096443 firstPositive = %t A096443 Compile[{{vv, _Integer, 1}}, %t A096443 Module[{k = 1}, Do[If[el == 0, k++, Break[]], {el, vv}]; k]]; %t A096443 p[{0 ...}] := 1; %t A096443 p[v_] := %t A096443 p[v] = Module[{len = Length[v], it, k, zeros, sum, pos, gcd}, %t A096443 it = Array[k, len]; %t A096443 pos = firstPositive[v]; %t A096443 zeros = ConstantArray[0, len]; %t A096443 sum = 0; %t A096443 Do[If[it == zeros, Continue[]]; %t A096443 gcd = GCD @@ it; %t A096443 sum += it[[pos]] DivisorSigma[-1, gcd] p[v - it];, %t A096443 Evaluate[Sequence @@ Thread[{it, 0, v}]]]; %t A096443 sum/v[[pos]]]; %t A096443 p[n]]; %t A096443 ParallelMap[MultiPartiteP, %t A096443 Flatten[Table[IntegerPartitions[k], {k, 0, 8}], 1]] %t A096443 (* Oleksandr Pavlyk, Jan 23 2011 *) %Y A096443 Cf. A035098, A035310. %K A096443 nonn %O A096443 0,3 %A A096443 _Jon Wild_, Aug 11 2004 %E A096443 Edited by _Franklin T. Adams-Watters_, May 16 2006