cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096465 Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion T(n, k) = T(n-1, k) + T(n, k-1).

This page as a plain text file.
%I A096465 #19 May 01 2021 22:02:27
%S A096465 1,1,1,1,2,1,1,3,4,1,1,4,8,9,1,1,5,13,22,23,1,1,6,19,41,64,65,1,1,7,
%T A096465 26,67,131,196,197,1,1,8,34,101,232,428,625,626,1,1,9,43,144,376,804,
%U A096465 1429,2055,2056,1,1,10,53,197,573,1377,2806,4861,6917,6918,1,1,11,64,261,834,2211,5017,9878,16795,23713,23714,1
%N A096465 Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion T(n, k) = T(n-1, k) + T(n, k-1).
%C A096465 The third column is A034856 (binomial(n+1, 2) + n-1).
%C A096465 The row sums are A014137 (partial sums of Catalan numbers (A000108)).
%C A096465 The "1st subdiagonal" ((i+1,i) entries) are also A014137.
%C A096465 The "2nd subdiagonal" ((i+2,i) entries) is A014138 ( Partial sums of Catalan numbers (starting 1,2,5,...)).
%C A096465 The "3rd subdiagonal" ((i+3,i) entries) is A001453 (Catalan numbers - 1.)
%C A096465 This is the reverse of A091491 - see A091491 for more information. The sequence of antidiagonal sums gives A124642. - _Gerald McGarvey_, Dec 09 2006
%H A096465 Reinhard Zumkeller, <a href="/A096465/b096465.txt">Rows n=0..150 of triangle, flattened</a>
%F A096465 From _G. C. Greubel_, Apr 30 2021: (Start)
%F A096465 T(n, k) = (n-k) * Sum_{j=0..k} binomial(n+k-2*j, n-j)/(n+k-2*j) with T(n,n) = 1.
%F A096465 T(n, k) = A091491(n, n-k).
%F A096465 Sum_{k=0..n} T(n,k) = Sum_{j=0..n} A000108(j) = A014137(n). (End)
%e A096465 Triangle begins as:
%e A096465   1;
%e A096465   1, 1;
%e A096465   1, 2,  1;
%e A096465   1, 3,  4,  1;
%e A096465   1, 4,  8,  9,   1;
%e A096465   1, 5, 13, 22,  23,   1;
%e A096465   1, 6, 19, 41,  64,  65,   1;
%e A096465   1, 7, 26, 67, 131, 196, 197, 1;
%p A096465 A096465:= (n,k)-> `if`(k=n, 1, (n-k)*add(binomial(n+k-2*j, n-j)/(n+k-2*j), j=0..k));
%p A096465 seq(seq(A096465(n,k), k=0..n), n=0..12) # _G. C. Greubel_, Apr 30 2021
%t A096465 T[_, 0]= 1; T[n_, n_]= 1; T[n_, m_]:= T[n, m]= T[n-1, m] + T[n, m-1]; T[n_, m_] /; n < 0 || m > n = 0; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* _Jean-François Alcover_, Dec 17 2012 *)
%o A096465 (Haskell)
%o A096465 a096465 n k = a096465_tabl !! n !! k
%o A096465 a096465_row n = a096465_tabl !! n
%o A096465 a096465_tabl = map reverse a091491_tabl
%o A096465 -- _Reinhard Zumkeller_, Jul 12 2012
%o A096465 (Magma)
%o A096465 A096465:= func< n,k | k eq n select 1 else (n-k)*(&+[Binomial(n+k-2*j, n-j)/(n+k-2*j): j in [0..k]]) >;
%o A096465 [A096465(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 30 2021
%o A096465 (Sage)
%o A096465 def A096465(n,k): return 1 if (k==n) else (n-k)*sum( binomial(n+k-2*j, n-j)/(n+k-2*j) for j in (0..k))
%o A096465 flatten([[A096465(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 30 2021
%Y A096465 Cf. A000108, A001453, A014137, A014138, A034856.
%Y A096465 Cf. A006134, A024718, A030237, A078478, A091491, A100066, A105848, A124642.
%K A096465 nonn,tabl
%O A096465 0,5
%A A096465 _Gerald McGarvey_, Aug 12 2004
%E A096465 Offset changed by _Reinhard Zumkeller_, Jul 12 2012