cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096466 Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column ((n,0) entries) and the main diagonal ((n,n) entries) to powers of 2 with all other entries formed by the recursion T(n,k) = T(n-1,k) + T(n,k-1).

This page as a plain text file.
%I A096466 #28 Aug 07 2020 12:10:56
%S A096466 1,2,2,4,6,4,8,14,18,8,16,30,48,56,16,32,62,110,166,182,32,64,126,236,
%T A096466 402,584,616,64,128,254,490,892,1476,2092,2156,128,256,510,1000,1892,
%U A096466 3368,5460,7616,7744,256,512,1022,2022,3914,7282,12742,20358,28102,28358,512
%N A096466 Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column ((n,0) entries) and the main diagonal ((n,n) entries) to powers of 2 with all other entries formed by the recursion T(n,k) = T(n-1,k) + T(n,k-1).
%C A096466 T(n,k) = T(n-1,k) + T(n,k-1) for n >= 2 and 1 <= k <= n - 1 with T(n,0) = T(n,n) = 2^n for n >= 0.
%C A096466 The n-th row sum equals A082590(n), which is the expansion of 1/(1 - 2*x)/sqrt(1 - 4*x) and equals 2^n * JacobiP(n, 1/2, -1-n, 3).
%C A096466 First column is T(n,1) = A000918(n+1) = 2^(n+1) - 2.
%C A096466 From _Petros Hadjicostas_, Aug 06 2020: (Start)
%C A096466 T(n,2) = 2^(n+2) - 2*n - 8 for n >= 2.
%C A096466 T(n+1,n) = 2^n + Sum_{k=0..n} T(n,k) = 2^n + A082590(n).
%C A096466 Bivariate o.g.f.: ((1 - x)*(1 - y)/(1 - 2*x) - x*y/sqrt(1 - 4*x*y))/((1 - 2*x*y)*(1 - x - y)). (End)
%e A096466 From _Petros Hadjicostas_, Aug 06 2020: (Start)
%e A096466 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
%e A096466    1;
%e A096466    2,   2;
%e A096466    4,   6,   4;
%e A096466    8,  14,  18,   8;
%e A096466   16,  30,  48,  56,  16;
%e A096466   32,  62, 110, 166, 182,  32;
%e A096466   64, 126, 236, 402, 584, 616, 64;
%e A096466   ... (End)
%o A096466 (PARI) T(n,k) = if ((k==0) || (n==k), 2^n, if ((n<0) || (k<0), 0, if (n>k, T(n-1,k) + T(n,k-1), 0)));
%o A096466 for(n=0, 10, for (k=0, n, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, Aug 07 2020
%Y A096466 Cf. A000918, A082590.
%K A096466 nonn,tabl
%O A096466 0,2
%A A096466 _Gerald McGarvey_, Aug 12 2004
%E A096466 Offset changed to 0 by _Petros Hadjicostas_, Aug 06 2020