cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096470 Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column and in the main diagonal ((n,n) entries) to 1 and defining the rest of the entries by the recursion T(n,k) = T(n-1,k) - T(n,k-1).

This page as a plain text file.
%I A096470 #25 Aug 09 2020 01:07:55
%S A096470 1,1,1,1,0,1,1,-1,2,1,1,-2,4,-3,1,1,-3,7,-10,11,1,1,-4,11,-21,32,-31,
%T A096470 1,1,-5,16,-37,69,-100,101,1,1,-6,22,-59,128,-228,329,-328,1,1,-7,29,
%U A096470 -88,216,-444,773,-1101,1102,1,1,-8,37,-125,341,-785,1558,-2659,3761,-3760,1,1,-9,46,-171,512,-1297,2855,-5514,9275,-13035,13036,1
%N A096470 Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column and in the main diagonal ((n,n) entries) to 1 and defining the rest of the entries by the recursion T(n,k) = T(n-1,k) - T(n,k-1).
%C A096470 If A(x,y) is the bivariate o.g.f. of a triangular array T(n,k) and B(x,y) is the bivariate o.g.f. of its mirror image T(n,n-k), then B(x,y) = A(x*y, y^(-1)) and A(x,y) = B(x*y, y^(-1)). - _Petros Hadjicostas_, Aug 08 2020
%F A096470 T(n,k) = T(n-1,k) - T(n,k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
%F A096470 The 2nd column is T(n,2) = A000124(n-2) for n >= 2 (Hogben's central polygonal numbers).
%F A096470 The "first subdiagonal" (unsigned) is |T(n,n-1)| = A032357(n-1) for n >= 1 (Convolution of Catalan numbers and powers of -1).
%F A096470 The "2nd subdiagonal" (unsigned) is |T(n,n-2)| = A033297(n) = Sum_{i=0..n-2} (-1)^i*C(n-1-i) for n >= 2, where C(n) are the Catalan numbers (A000108).
%F A096470 From _Petros Hadjicostas_, Aug 08 2020: (Start)
%F A096470 |T(n,k)| = |A168377(n,n-k)| for 0 <= k <= n.
%F A096470 Bivariate o.g.f.: (1 + y + x*y*c(-x*y))/((1 - x*y)*(1 - x + y)), where c(x) = 2/(1 + sqrt(1 - 4*x)) = o.g.f. of A000108.
%F A096470 Bivariate o.g.f. of |T(n,k)|: (1 - y - x*y*c(x*y))/((1 + x*y)*(1 - x - y)) + 2*x*y/(1 - x^2*y^2).
%F A096470 Bivariate o.g.f. of mirror image T(n,n-k): (1 + y + x*y*c(-x))/((1 - x)*(1 + y - x*y^2)).
%F A096470 Bivariate o.g.f. of |T(n,n-k)|: (1 - y + x*y*c(x))/((1 + x)*(1 - y + x*y^2)) + 2*x/(1 - x^2). (End)
%e A096470 From _Petros Hadjicostas_, Aug 08 2020: (Start)
%e A096470 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
%e A096470   1;
%e A096470   1,  1;
%e A096470   1,  0,  1;
%e A096470   1, -1,  2,   1;
%e A096470   1, -2,  4,  -3,   1;
%e A096470   1, -3,  7, -10,  11,    1;
%e A096470   1, -4, 11, -21,  32,  -31,   1;
%e A096470   1, -5, 16, -37,  69, -100, 101,    1;
%e A096470   1, -6, 22, -59, 128, -228, 329, -328, 1;
%e A096470   ... (End)
%o A096470 (PARI) T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (n>k, T(n-1, k) - T(n, k-1), 0)));
%o A096470 for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ _Petros Hadjicostas_, Aug 08 2020
%Y A096470 Cf. A000108, A000124, A032357, A033297, A168377.
%K A096470 sign,tabl
%O A096470 0,9
%A A096470 _Gerald McGarvey_, Aug 12 2004
%E A096470 Offset changed to 0 by _Petros Hadjicostas_, Aug 08 2020